
openGauss
3.0.0

Feature Description

Issue 01

Date 2022-03-31

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2022. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Contents

1 High Performance..1
1.1 CBO Optimizer... 1
1.2 LLVM.. 2
1.3 Vectorized Engine.. 3
1.4 Hybrid Row-Column Store... 4
1.5 Adaptive Compression... 6
1.6 SQL by pass... 8
1.7 Kunpeng NUMA Architecture Optimization.. 8
1.8 High Concurrency of Thread Pools..9
1.9 SMP for Parallel Execution...10
1.10 Xlog no Lock Flush... 11
1.11 Parallel Page-based Redo For Ustore.. 12
1.12 Row-Store Execution to Vectorized Execution..13

2 High Availability (HA)... 15
2.1 Primary/Standby..15
2.2 Logical Replication... 17
2.3 Online Node Replacement...17
2.4 Logical Backup... 18
2.5 Physical Backup... 19
2.6 Automatic Job Retry upon Failure...20
2.7 Ultimate RTO..24
2.8 Cascaded Standby Server... 24
2.9 Delayed Replay.. 26
2.10 Adding or Deleting a Standby Node..27
2.11 Delaying Entering the Maximum Availability Mode.. 28
2.12 Parallel Logical Decoding.. 29
2.13 DCF.. 31
2.14 CM... 32
2.15 Global SysCache.. 33
2.16 Using a Standby Node to Build a Standby Node.. 35

3 Maintainability.. 36
3.1 Gray Upgrade... 36

openGauss
Feature Description Contents

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. ii

3.2 WDR...37
3.3 Slow SQL Diagnosis... 40
3.4 Session Performance Diagnosis... 43
3.5 System KPI-aided Diagnosis.. 45

4 Database Security... 47
4.1 Access Control Model.. 47
4.2 Separation of Control and Access Permissions... 48
4.3 Database Encryption Authentication... 49
4.4 Data Encryption and Storage..50
4.5 Database Audit.. 51
4.6 Network Communication Security.. 52
4.7 Resource Label... 53
4.8 Unified Audit.. 54
4.9 Dynamic Data Masking.. 57
4.10 Row-Level Access Control.. 60
4.11 Password Strength Verification..61
4.12 Equality Query in a Fully-encrypted Database.. 63
4.13 Ledger Database Mechanism... 66
4.14 Transparent Data Encryption..68

5 Enterprise-Level Features.. 70
5.1 Support for Functions and Stored Procedures.. 70
5.2 SQL Hints... 71
5.3 Full-Text Indexing.. 72
5.4 Copy Interface for Error Tolerance.. 73
5.5 Partitioning..74
5.6 Support for Advanced Analysis Functions.. 76
5.7 Materialized View... 77
5.8 HyperLogLog.. 77
5.9 Creating an Index Online... 78
5.10 Autonomous Transaction... 79
5.11 Global Temporary Table... 80
5.12 Pseudocolumn ROWNUM... 81
5.13 Stored Procedure Debugging... 82
5.14 JDBC Client Load Balancing and Read/Write Isolation... 83
5.15 In-place Update Storage Engine... 84
5.16 Publication-Subscription.. 85
5.17 Foreign Key Lock Enhancement.. 86
5.18 Data Compression in OLTP Scenarios..87

6 Application Development Interfaces.. 89
6.1 Standard SQL... 89
6.2 Standard Development Interfaces.. 90

openGauss
Feature Description Contents

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. iii

6.3 PostgreSQL API Compatibility.. 90
6.4 PL/Java.. 91

7 AI Capabilities.. 94
7.1 AI4DB: Autonomous Database O&M... 95
7.1.1 Database Metric Collection, Forecast, and Exception Detection.. 95
7.1.2 Root Cause Analysis for Slow SQL Statements... 96
7.1.3 Index Recommendation.. 97
7.1.4 Parameter Tuning and Diagnosis... 98
7.1.5 Slow SQL Statement Discovery.. 99
7.2 DB4AI: Database-driven AI..100
7.3 AI in DB.. 101
7.3.1 Predictor: AI Query Time Forecasting.. 101

8 Tool Chain... 104
8.1 MySQL to openGauss Migration Tool Chameleon..104
8.2 OpenGauss Client Tool DataStudio.. 105

9 Middleware...107
9.1 Distributed Database Capability... 107
9.2 Deploying a Distributed Database Using Kubernetes... 108

openGauss
Feature Description Contents

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. iv

1 High Performance

1.1 CBO Optimizer

1.2 LLVM

1.3 Vectorized Engine

1.4 Hybrid Row-Column Store

1.5 Adaptive Compression

1.6 SQL by pass

1.7 Kunpeng NUMA Architecture Optimization

1.8 High Concurrency of Thread Pools

1.9 SMP for Parallel Execution

1.10 Xlog no Lock Flush

1.11 Parallel Page-based Redo For Ustore

1.12 Row-Store Execution to Vectorized Execution

1.1 CBO Optimizer

Availability

This feature is available since openGauss 1.0.0.

Introduction

The openGauss optimizer is cost-based optimization (CBO).

Benefits

The openGauss CBO optimizer can select the most efficient execution plan among
multiple plans based on the cost to meet customer service requirements to the
maximum extent.

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 1

Description

By using CBO, the database calculates the number of tuples and the execution
cost for each step under each execution plan based on the number of table tuples,
column width, null record ratio, and characteristic values, such as distinct, MCV,
and HB values, and certain cost calculation methods. The database then selects
the execution plan that takes the lowest cost for the overall execution or for the
return of the first tuple.

Enhancements

None.

Constraints

None.

Dependencies

None.

1.2 LLVM

Availability

This feature is available since openGauss 1.0.0.

Introduction

openGauss provides the Low Level Virtual Machine (LLVM) technology to query
dynamic compilation execution.

Benefits

The requery performance is greatly improved by dynamically building and
executing queries.

Description

Based on the query execution plan tree, with the library functions provided by the
LLVM, openGauss moves the process of determining the actual execution path
from the executor phase to the execution initialization phase. In this way,
problems such as function calling, logic condition branch determination, and a
large amount of data reading that are related to the original query execution are
avoided, to improve the query performance.

Enhancements

None.

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 2

Constraints
None.

Dependencies
It depends on the LLVM open-source component. Currently, the open-source
version 10.0.0 is used.

1.3 Vectorized Engine

Availability
This feature is available since openGauss 1.0.0.

Introduction
The vectorized execution engine, provided by openGauss, is usually used in OLAP
data warehouse systems because analytical systems are usually data-intensive and
access most data in a table in a sequential manner, perform calculation, and
finally output a calculation result to an end user.

Benefits
Batch calculation greatly improves the performance of complex query.

Description
The traditional database query execution uses the tuple-based pipeline execution
mode. In most time, the CPU is not used to actually process data, but to traverse
the query operation tree. As a result, the effective utilization of the CPU is not
high. This also results in low instruction cache performance and frequent jumps.
Worse still, this approach does not take advantage of the new capabilities of the
new hardware to speed up the execution of queries. In the execution engine,
another solution is to change a tuple to a column at a time. This is also the basis
of our vectorized execution engine.

The vectorized engine is bound to the column-store technology, because data of
each column is stored together, and it may be considered that the data is stored in
an array manner. Based on such a feature, when a same operation needs to be
performed on the column data, calculation of each value of the data block may be
efficiently completed by using a cycle.

The advantages of the vectorized execution engine are as follows:

● This reduces inter-node scheduling and improves CPU usage.
● Because the same type of data is put together, it is easier to leverage the new

optimization features of hardware and compilation.

Enhancements
None.

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 3

Constraints
None.

Dependencies
It depends on column store.

1.4 Hybrid Row-Column Store

Availability
This feature is available since openGauss 1.0.0.

Introduction
openGauss supports both row-store and column-store models. Choose a row-store
or column-store table as needed.

Column-store is recommended if a table contains many columns (called a wide
table) but its query involves only a few columns. Figure 1-1 shows the column-
store model. Row store is recommended if a table contains only a few columns
and a query involves most of the fields.

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 4

Figure 1-1 Column-store

Benefits

In a wide table containing a huge amount of data, a query usually only includes
certain columns. In this case, the query performance of the row-store engine is
poor. For example, a single table containing the data of a meteorological agency
has 200 to 800 columns. Among these columns, only 10 are frequently accessed.
In this case, a vectorized execution and column-store engine can significantly
improve performance by saving storage space.

Description

Tables are categorized into row-store and column-store tables. Each storage
model applies to specific scenarios. Select an appropriate model when creating a
table.

● Row-store table
Row-store tables are created by default. Data is stored by row. Row-store
supports adding, deleting, modifying, and querying data of a complete row.

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 5

Therefore, this storage model applies to scenarios where data needs to be
updated frequently.

● Column-store table
Data is stored by column. The I/O of data query in a single column is small,
and column-store tables occupy less storage space than row-store tables. This
storage model applies to scenarios where data is inserted in batches, less
updated, and queried for statistical analysis. The performance of single point
query and single record insertion in a column-store table is poor.

● Selecting a storage model
– Update frequency

If data is frequently updated, use a row-store table.
– Data insertion frequency

If a small amount of data is frequently inserted each time, use a row-
store table. If a large amount of data is inserted at a time, use a column-
store table.

– Number of columns
If a table is to contain many columns, use a column-store table.

– Number of columns to be queried
If only a small number of columns (less than 50% of the total) is queried
each time, use a column-store table.

– Compression ratio
The compression ratio of a column-store table is higher than that of a
row-store table. High compression ratio consumes more CPU resources.

Enhancements
None.

Constraints
None.

Dependencies
None.

1.5 Adaptive Compression

Availability
This feature is available since openGauss 1.0.0.

Introduction
Data compression is the major technology used in current databases. Various
compression algorithms are used for different data types. If pieces of data of the
same type have different characteristics, their compression algorithms and results
will also be different. Adaptive compression chooses the suitable compression

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 6

algorithm for data based on the data type and characteristics, achieving high
performance in compression ratio, import, and query.

Benefits

Importing and frequently querying a huge amount of data are the main
application scenarios. When you import data, adaptive compression greatly
reduces the data volume, increases I/O operation efficiency several times, and
clusters data before storage, achieving fast data import. In this way, only a small
number of I/O operations is required and data is quickly decompressed in a query.
Data can be quickly retrieved and the query result is quickly returned.

Description

Currently, the database has implemented various compression algorithms on
column store, including RLE, DELTA, BYTEPACK/BITPACK, LZ4, ZLIB, and LOCAL
DICTIONARY. The following table lists data types and the compression algorithms
suitable for them.

- RLE DELT
A

BITPACK/
BYTEPACK

LZ4 ZLIB LOCAL
DICTION
ARY

Smallint/Int/Bigint/Oid
Decimal/Real/Double
Money/Time/Date/
Timestamp

√ √ √ √ √ -

Tinterval/Interval/Time
with time zone/

- - - - √ -

Numeric/Char/Varchar/
Text/Nvarchar2
and other supported
data types

√ √ √ √ √ √

Enhancements

The compression level of compression algorithms can be adjusted.

Constraints

None

Dependencies

It depends on LZ4 or ZLIB.

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 7

1.6 SQL by pass

Availability
This feature is available since openGauss 1.0.0.

Introduction
Query performance is improved by customizing an execution scheme for typical
queries in the TP scenario.

Benefits
The TP query performance is improved.

Description
In a typical OLTP scenario, simple queries account for a large proportion. This type
of queries involves only single tables and simple expressions. To accelerate such
query, the SQL bypass framework is proposed. After simple mode judgment is
performed on such query at the parse layer, the query enters a special execution
path and skips the classic execution framework, including operator initialization
and execution, expression, and projection. Instead, it directly rewrites a set of
simple execution paths and directly invokes storage interfaces, greatly accelerating
the execution of simple queries.

Enhancements
None.

Constraints
None.

Dependencies
None.

1.7 Kunpeng NUMA Architecture Optimization

Availability
This feature is available since openGauss 1.0.0.

Introduction
Kunpeng NUMA architecture optimization mainly focuses on Kunpeng processor
architecture features and ARMv8 instruction set, and optimizes the system from
multiple layers, including OS, software architecture, lock concurrency, logs, atomic

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 8

operations, and cache access. This greatly improves the openGauss performance
on the Kunpeng platform.

Benefits

Transactions per minute (TPM) is a key performance indicator of the database
competitiveness. Under the same hardware costs, a higher database performance
means the database can process more services, thereby reducing the usage cost of
customers.

Description
● openGauss optimizes the Kunpeng NUMA architecture based on the

architecture characteristics. This reduces cross-core memory access latency
and maximizes multi-core Kunpeng computing capabilities. The key
technologies include redo log batch insertion, NUMA distribution of hotspot
data, and CLog partitions, greatly improving the TP system performance.

● Based on the ARMv8.1 architecture used by the Kunpeng chip, openGauss
uses the LSE instruction set to implement efficient atomic operations,
effectively improving the CPU usage, multi-thread synchronization
performance, and Xlog write performance.

● Based on the wider L3 cache line provided by the Kunpeng chip, openGauss
optimizes hotspot data access, effectively improving the cache access hit ratio,
reducing the cache consistency maintenance overhead, and greatly improving
the overall data access performance of the system.

● Kunpeng 920, 2P server (64 cores x 2, memory: 768 GB), 10 GE network, I/O:
4 NVMe PCIe SSDs, TPC-C: 1000 warehouses, performance: 1,500,000 tpmC.

Enhancements
● Batch redo log insertion and CLog partition are supported, improving the

database performance on the Kunpeng platform.

● Efficient atomic operations using the LSE instruction set are supported,
improving multi-thread synchronization performance.

Constraints

None

Dependencies

None

1.8 High Concurrency of Thread Pools

Availability

This feature is available since openGauss 1.0.0.

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 9

Introduction

The thread pooling technology is used to support stable running of databases at
high concurrency.

Benefits

The overall system throughput is stable in case of a large number of concurrent
requests.

Description

The overall design idea of the thread pool technology is to pool thread resources
and reuse them among different connections. After the system is started, a fixed
number of working threads are started based on the current number of cores or
user configuration. A working thread serves one or more connection sessions. In
this way, the session and thread are decoupled. The number of worker threads is
fixed. Therefore, frequent thread switchover does not occur in case of high
concurrency. The database layer schedules and manages sessions.

Enhancements

This feature is available since openGauss 1.0.0.

In openGauss 1.1.0, thread pools can be dynamically scaled in or out.

Constraints

None

Dependencies

None

1.9 SMP for Parallel Execution

Availability

This feature is available since openGauss 1.1.0.

Introduction

The Symmetric Multi-Processing (SMP) technology of openGauss uses the multi-
core CPU architecture of a computer to implement multi-thread parallel
computing, fully using CPU resources to improve query performance.

Benefits

Fully utilizes the system multi-core capability to improve requery performance.

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 10

Description
In complex query scenarios, a single query takes long time and the system
concurrency is low. Therefore, the SMP technology is used to implement operator-
level parallel execution, which effectively reduces the query time and improves the
query performance and resource utilization. The overall implementation of the
SMP technology is as follows: For query operators that can be executed in parallel,
data is sliced, multiple working threads are started for computation, and then the
results are summarized and returned to the frontend. The data interaction
operator Stream is added to the SMP architecture to implement data interaction
between multiple working threads, ensuring the correctness and integrity of the
query.

Enhancements
None.

Constraints
● Index scanning cannot be executed in parallel.
● MergeJoin cannot be executed in parallel.
● WindowAgg order by cannot be executed in parallel.
● The cursor cannot be executed in parallel.
● Queries in stored procedures and functions cannot be executed in parallel.
● Subplans and initplans cannot be queried in parallel, and operators that

contain subqueries cannot be executed in parallel, either.
● Query statements that contain the median operation cannot be executed in

parallel.
● Queries with global temporary tables cannot be executed in parallel.
● Updating materialized views cannot be executed in parallel.

Dependencies
None.

1.10 Xlog no Lock Flush

Availability
This feature is available since openGauss 2.0.0.

Introduction
Canceled the WalInsertLock contention and dedicated WalWriter disk write thread.

Benefits
The system performance is further improved on the basis that the original Xlog
functions remain unchanged.

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 11

Description

This feature optimizes the WalInsertLock mechanism by using log sequence
numbers (LSNs) and log record counts (LRCs) to record the copy progress of each
backend. The backend can directly copy logs to the WalBuffer without contending
for the WalInsertLock. In addition, a dedicated WALWriter thread is used to write
logs, and the backend thread does not need to ensure the Xlog flushing.

Enhancements

None.

Constraints

None.

Dependencies

None.

1.11 Parallel Page-based Redo For Ustore

Availability

This feature is available since openGauss 2.1.0.

Introduction

Optimized Ustore inplace update WAL write and improved the degree of
parallelism for Ustore DML operation replay.

Benefits

The WAL space used by the update operation is reduced, and the degree of
parallelism for Ustore DML operation replay is improved.

Description

Prefixes and suffixes are used to reduce the write times of WAL update. Replay
threads are classified to solve the problem that most Ustore DML WALs are
replayed on multiple pages. In addition, Ustore data pages are replayed based on
blkno.

Enhancements

None.

Constraints

None.

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 12

Dependencies

This feature depends on the Ustore engine.

1.12 Row-Store Execution to Vectorized Execution

Availability

This feature is available since openGauss 3.0.0.

Introduction

Row-store table queries are converted into vectorized execution plans for
execution, improving the execution performance of complex queries.

Benefits

When processing row-store table queries, the executor has poor performance
when executing complex queries that include many expressions or join operations,
while the vectorized executor has excellent performance when executing complex
queries. Therefore, query performance of complex queries can be effectively
improved by converting row-store table execution into vectorized execution.

Description

This feature adds a RowToVec operation to scan operators. After the data in the
row-store table is converted into the vectorized format in the memory, the upper-
layer operators can be converted into vectorized operators. In this way, the
vectorized executor can be used for calculation. Scan operators that support this
conversion include SeqScan, IndexOnlyscan, IndexScan, BitmapScan, FunctionScan,
ValueScan and TidScan.

Enhancements

None.

Constraints
● Vectorization is not supported in the following scenarios:

– The targetList contains a function that returns set.

– The targetList or qual contains expressions that do not support
vectorization, such as array expressions, multi-subquery expressions, field
expressions, and system catalog columns.

– The following types do not support vectorization: POINTOID, LSEGOID,
BOXOID, LINEOID, CIRCLEOID, POLYGONOID, PATHOID, and user-defined
types.

● MOTs do not support vectorization.

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 13

Dependencies
Vectorized executor

openGauss
Feature Description 1 High Performance

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 14

2 High Availability (HA)

2.1 Primary/Standby

2.2 Logical Replication

2.3 Online Node Replacement

2.4 Logical Backup

2.5 Physical Backup

2.6 Automatic Job Retry upon Failure

2.7 Ultimate RTO

2.8 Cascaded Standby Server

2.9 Delayed Replay

2.10 Adding or Deleting a Standby Node

2.11 Delaying Entering the Maximum Availability Mode

2.12 Parallel Logical Decoding

2.13 DCF

2.14 CM

2.15 Global SysCache

2.16 Using a Standby Node to Build a Standby Node

2.1 Primary/Standby

Availability
This feature is available since openGauss 1.0.0.

Introduction
To ensure that a fault can be rectified, data needs to be written into multiple
copies. Multiple copies are configured for the primary and standby nodes, and logs

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 15

are used for data synchronization. In this way, openGauss has no data lost when a
node is faulty or the system restarts after a stop, meeting the ACID feature
requirements.

Benefits
Services can be switched to the standby node when the primary node is faulty.
Therefore, data is not lost and services can be quickly restored.

Description
You can deploy the one-primary-multiple-standby mode. In the one-primary-
multiple-standby mode, all standby nodes need to redo logs and can be promoted
to the primary. The one-primary-multiple-standby mode provides higher DR
capabilities and is more suitable for the OLTP system that processes a large
number of transactions.

The switchover command can be used to trigger a switchover between the
primary and standby nodes. If the primary node is faulty, the failover command
can be used to promote the standby node to the primary.

In scenarios such as initial installation or backup and restoration, data on the
standby node needs to be rebuilt based on the primary node. In this case, the
build function is required to send the data and WALs of the primary node to the
standby node. When the primary node is faulty and joins again as a standby node,
the build function needs to be used to synchronize data and WALs with those of
the new primary node. In addition, in online capacity expansion scenarios, you
need to use build to synchronize metadata to instances on new nodes. Build
includes full build and incremental build. Full build depends on primary node data
for rebuild. The amount of data to be copied is large and the time required is long.
Incremental build copies only differential files. The amount of data to be copied is
small and the time required is short. Generally, the incremental build is preferred
for fault recovery. If the incremental build fails, the full build continues until the
fault is rectified.

To implement HA DR for all instances, in addition to the preceding primary/
standby multi-copy replication configured for DNs, openGauss also provides other
primary/standby DR capabilities, such as CM server (one primary and multiple
standbys) and ETCD (one primary and multiple standbys). In this way, instances
can be recovered as soon as possible without interrupting services, minimizing the
impact of hardware, software, and human errors on services and ensuring service
continuity.

Enhancements
None.

Constraints
None.

Dependencies
None.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 16

2.2 Logical Replication

Availability

This feature is available since openGauss 1.0.0.

Introduction

openGauss provides the logical decoding function to reversely parse physical logs
to logical logs. Logical replication tools such as DRS convert logical logs to SQL
statements and replay the SQL statements in the peer database. In this way, data
can be synchronized between heterogeneous databases. Currently, unidirectional
and bidirectional logical replication between the openGauss database and the
MySQL or Oracle database is supported.

Benefits

Logical replication is applicable to real-time database data migration, dual-
database active-active system, and rolling upgrades.

Description

DNs reversely parse physical logs to logical logs. Logical replication tools such as
DRS extract logical logs from DNs, convert the logs to SQL statements, and replay
the SQL statements in MySQL. Logical replication tools also extract logical logs
from a MySQL database, reversely parse the logs to SQL statements, and replay
the SQL statements in openGauss. In this way, data can be synchronized between
heterogeneous databases.

Enhancements
● openGauss 1.0.0 logic decoding supports the extraction of logs from full and

incremental logs.
● openGauss 1.1.0 supports logical decoding on a standby node.

Constraints

Column-store replication and DDL replication are not supported.

Dependencies

It depends on logical replication tools that decode logical logs.

2.3 Online Node Replacement

Availability

This feature is available since openGauss 1.0.0.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 17

Introduction

If a node in a database is unavailable or the instance status is abnormal due to a
hardware fault and the database is not locked, you can replace the node or rectify
the instance fault to restore the database. During the restoration, DML operations
are supported. DDL operations are supported in limited scenarios only.

Benefits

Currently, the scale of enterprise data is increasing, the number of nodes increases
sharply, and the probability of hardware damage increases accordingly. The
traditional offline node replacement mode cannot meet customer requirements
for uninterrupted services. During routine O&M, frequent service interruption will
bring great loss to customers. However, the current database products in the
industry cannot meet the requirements of physical node replacement in large-
scale data scenarios without service interruption. Services need to be interrupted,
or only some operations are allowed when services are not interrupted.

Description

If a node in a database is unavailable or the instance status is abnormal due to a
hardware fault, you can replace the node or rectify the instance fault to restore
the database. During the restoration, DML operations are supported. DDL
operations are supported in limited scenarios only.

Enhancements

None.

Constraints

Currently, online DDL operations are supported during node replacement.

● During node replacement, DML operations are supported and DDL operations
are supported in certain scenarios.

Dependencies

None.

2.4 Logical Backup

Availability

This feature is available since openGauss 1.0.0.

Introduction

Data in user tables in the database is backed up to a specified storage medium in
a general format.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 18

Benefits

Through logical backup, you can achieve the following purposes:

● Back up user data to a reliable storage medium to secure data.
● Support cross-version recovery and heterogeneous recovery using a general

data format.
● Archive cold data.

Description

openGauss provides the logical backup capability to back up data in user tables to
local disk files in text or CSV format and restore the data in homogeneous or
heterogeneous databases.

Enhancements

None.

Constraints

For details about the restrictions on logical backup, see "Server Tools > gs_dump"
in the Tool Reference.

Dependencies

None.

2.5 Physical Backup

Availability

This feature is available since openGauss 1.0.0.

Introduction

Data in the entire database is backed up to a specified storage medium in an
internal format.

Benefits

Through physical backup, you can achieve the following purposes:

● Back up data of the entire database to a reliable storage medium, improving
system reliability.

● Improve backup and restoration performance using an internal data format.
● Archive cold data.

The typical physical backup policy and application scenario are as follows:

● On Monday, perform a full backup of the database.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 19

● On Tuesday, perform an incremental backup based on the full backup on
Monday.

● On Wednesday, perform an incremental backup based on the incremental
backup on Tuesday.

● ...
● On Sunday, perform an incremental backup based on the incremental backup

on Saturday.

The preceding backup operations are executed every week.

Description
openGauss 1.1.0 provides the physical backup capability to back up data of the
entire database to local disk files, OBS objects, NBU objects, or EISOO objects in
the internal database format, and restore data of the entire database in a
homogeneous database. In addition to the preceding functions, it also provides
advanced functions such as compression, flow control, and resumable backup.

Physical backup is classified into full backup and incremental backup. The
difference is as follows: Full backup includes the full data of the database at the
backup time point. The time required for full backup is long (in direct proportion
to the total data volume of the database), and a complete database can be
restored. An incremental backup involves only incremental data modified after a
specified time point. It takes a short period of time (in direct proportion to the
incremental data volume and irrelevant to the total data volume). However, a
complete database can be restored only after the incremental backup and full
backup are performed.

Enhancements
Supports full backup and incremental backup simultaneously.

Constraints
For details about the constraints of physical backup, see Backup and Restoration >
Physical Backup and Restoration in Administrator Guide.

Dependencies
None.

2.6 Automatic Job Retry upon Failure

Availability
This feature is available since openGauss 1.0.0.

Introduction
If an error occurs in batch processing jobs due to network exceptions or deadlocks,
failed jobs are automatically retried.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 20

Benefits

In common fault scenarios, such as network exception and deadlock, queries retry
automatically in case of failure to improve database usability.

Description

openGauss provides the job retry mechanism: gsql Retry.

● The gsql retry mechanism uses a unique error code (SQL STATE) to identify
an error that requires a retry. The function of the client tool gsql is enhanced.
The error code configuration file retry_errcodes.conf is used to configure the
list of errors that require a retry. The file is stored in the installation directory
at the same level as gsql. gsql provides the \set RETRY [number] command
to enable or disable the retry function. The number of retry times ranges from
5 to 10, and the default value is 5. When this function is enabled, gsql reads
the preceding configuration file. The error retry controller records the error
code list through the container. If an error occurs in the configuration file
after the function is enabled, the controller sends the cached query statement
to the server for retry until the query is successful or an error is reported
when the number of retry times exceeds the maximum.

Enhancements

None

Constraints
● Functionality constraints:

Retrying increases execution success rate but does not guarantee success.

● Error type constraints:

Only the error types in Table 2-1 are supported.

Table 2-1 Supported error types

Error Type Err
or
Cod
e

Remarks

CONNECTION_RESET_BY_PEER YY0
01

TCP communication error. Print
information: "Connection reset
by peer"

STREAM_CONNECTION_RESET_B
Y_PEER

YY0
02

TCP communication error. Print
information: "Stream connection
reset by peer" (communication
between DNs)

LOCK_WAIT_TIMEOUT YY0
03

Lock wait timeout. Print
information: "Lock wait timeout"

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 21

Error Type Err
or
Cod
e

Remarks

CONNECTION_TIMED_OUT YY0
04

TCP communication error. Print
information: "Connection timed
out"

SET_QUERY_ERROR YY0
05

Failed to deliver the SET
command. Print information:
"Set query error"

OUT_OF_LOGICAL_MEMORY YY0
06

Failed to apply for memory. Print
information: "Out of logical
memory"

SCTP_MEMORY_ALLOC YY0
07

SCTP communication error. Print
information: "Memory allocate
error"

SCTP_NO_DATA_IN_BUFFER YY0
08

SCTP communication error. Print
information: "SCTP no data in
buffer"

SCTP_RELEASE_MEMORY_CLOSE YY0
09

SCTP communication error. Print
information: "Release memory
close"

SCTP_TCP_DISCONNECT YY0
10

SCTP and TCP communication
error. Print information: "SCTP,
TCP disconnect"

SCTP_DISCONNECT YY0
11

SCTP communication error. Print
information: "SCTP disconnect"

SCTP_REMOTE_CLOSE YY0
12

SCTP communication error. Print
information: "Stream closed by
remote"

SCTP_WAIT_POLL_UNKNOW YY0
13

Waiting for an unknown poll.
Print information: "SCTP wait
poll unknow"

SNAPSHOT_INVALID YY0
14

Invalid snapshot. Print
information: "Snapshot invalid"

ERRCODE_CONNECTION_RECEIV
E_WRONG

YY0
15

Failed to receive a connection.
Print information: "Connection
receive wrong"

OUT_OF_MEMORY 532
00

Out of memory. Print
information: "Out of memory"

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 22

Error Type Err
or
Cod
e

Remarks

CONNECTION_EXCEPTION 080
00

Failed to communicate with DNs
due to connection errors. Print
information: "Connection
exception"

ADMIN_SHUTDOWN 57P
01

System shutdown by the
administrator. Print information:
"Admin shutdown"

STREAM_REMOTE_CLOSE_SOCKE
T

XX0
03

Remote socket disabled. Print
information: "Stream remote
close socket"

ERRCODE_STREAM_DUPLICATE_
QUERY_ID

XX0
09

Duplicate query. Print
information: "Duplicate query id"

ERRCODE_STREAM_CONCURREN
T_UPDATE

YY0
16

Concurrent stream query and
update. Print information:
"Stream concurrent update"

● Statement type constraints:

Support single-statement stored procedures, functions, and anonymous
blocks. Statements in transaction blocks are not supported.

● Statement constraints of a stored procedure:
– If an error occurs during the execution of a stored procedure containing

EXCEPTION (including statement block execution and statement
execution in EXCEPTION), the stored procedure can be retried. If the error
is captured by EXCEPTION, the stored procedure cannot be retried.

– Advanced packages that use global variables are not supported.
– DBE_TASK is not supported.
– PKG_UTIL file operation is not supported.

● Data import constraints:
– The COPY FROM STDIN statement is not supported.
– The gsql \copy from metacommand is not supported.
– Data cannot be imported using JDBC CopyManager copyIn.

Dependencies
Valid only if the gsql tool works normally and the error list is correctly configured.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 23

2.7 Ultimate RTO

Availability
This feature is available since openGauss 1.1.0.

Introduction
● The database host can be quickly restored after being restarted.
● Logs can be synchronized between the primary and standby nodes to

accelerate playback on the standby node.

Benefits
When the service load is heavy, the playback speed of the standby node cannot
catch up with that of the primary node. After the system runs for a long time, logs
are accumulated on the standby node. If a host is faulty, data restoration takes a
long time and the database is unavailable, which severely affects system
availability.

The ultimate recovery time object (RTO) is enabled to reduce the data recovery
time after a host fault occurs and improve availability.

Description
After the ultimate RTO function is enabled, multi-level pipelines are established
for Xlog log playback to improve the concurrency and log playback speed.

Enhancements
None.

Constraints
The ultimate RTO focuses only on whether the RTO of the standby node meets
the requirements. The ultimate RTO removes the built-in flow control and uses the
recovery_time_target parameter for flow control. This feature does not support
the read operation on the standby node. If you query the standby node, a core
dump may occur on the standby node.

Dependencies
None.

2.8 Cascaded Standby Server

Availability
This feature is available since openGauss 1.1.0.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 24

Introduction

A cascaded standby server can be connected to a standby server based on the
one-primary-multiple-standby architecture.

Benefits

The one-primary-multiple-standby architecture cannot support a flexible structure
in feature service scenarios. The multi-equipment room deployment cannot meet
requirements of the complete structure in the HA switchover scenario (three
instances in the primary and standby equipment rooms and two or three instances
in the secondary equipment room). If the number of standby servers increases, the
primary server may be overloaded. Queries that have low real-time requirements
can be implemented on cascaded standby servers. Therefore, the cascading
backup capability is required.

Description

The primary server replicates logs to the standby server in synchronous or
asynchronous mode. The standby server replicates logs to the cascaded standby
server only in asynchronous mode.

In the current one-primary-multiple-standby architecture, the primary server uses
the WAL sender process (walsender) to replicate logs to the standby server. The
standby server uses the WAL receiver process (walreceiver) to receive and then
flushes logs to local disks. The standby server reads redo logs to complete data
replication between the primary and standby servers. There is a one-to-one
mapping between walsender and walreceiver on the primary and standby servers.
Logs are sent between the standby and cascaded standby servers in asynchronous
mode using walsender and walreceiver, reducing the streaming replication
pressure on the primary server.

Enhancements

None

Constraints
● A cascaded standby server can only replicate data from a standby server and

cannot directly replicate data from the primary server.
● A cascaded standby server does not support data build from a standby server.

Currently, data can be built only from the primary server. If the standby server
is fully built, the cascaded standby server needs to be fully built.

● The cascaded standby node is in asynchronous replication mode.
● The cascaded standby server cannot be promoted.
● The cascaded standby server cannot be notified.
● Currently, the overall architecture of the primary-standby-cascaded standby

cluster cannot be queried. You need to find the standby server based on the
primary server and then find the cascaded standby server based on the
standby server.

● A cascaded standby server cannot own another cascaded standby server.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 25

● When the ultimate RTO is enabled, no cascaded standby server is supported.

Dependencies
None

2.9 Delayed Replay

Availability
This feature is available since openGauss 2.0.0.

Introduction
The time for a standby node to replay can be delayed.

Benefits
By default, the standby server restores the Xlog records from the primary server as
soon as possible. This function allows you to delay the time for a standby node to
replay Xlog records. In this case, you can query a copy that records data before a
period of time, which helps correct errors such as misoperations.

Description
The GUC parameter recovery_min_apply_delay can be used to set the delay time
so that a standby server can replay Xlog records from the primary server after a
delay time.

Value range: an integer ranging from 0 to INT_MAX. The unit is ms.

Default value: 0 (no delay)

Enhancements
None.

Constraints
● The recovery_min_apply_delay parameter is invalid on the primary node. It

must be set on the standby node to be delayed.
● The delay time is calculated based on the timestamp of transaction commit

on the primary server and the current time on the standby server. Therefore,
ensure that the clocks of the primary and standby servers are the same.

● Operations without transactions are not delayed.
● After the primary/standby switchover, if the original primary server needs to

be delayed, you need to manually set this parameter.
● When synchronous_commit is set to remote_apply, synchronous replication

is affected by the delay. Each commit message is returned only after the
replay on the standby server is complete.

● Using this feature also delays hot_standby_feedback, which may cause the
primary server to bloat, so be careful when using both.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 26

● If a DDL operation (such as DROP or TRUNCATE) that holds an
AccessExclusive lock is performed on the primary server, the query operation
on the operation object on the standby server will be returned only after the
lock is released during the delayed replay of the record on the standby server.

Dependencies
None.

2.10 Adding or Deleting a Standby Node

Availability
This feature is available since openGauss 2.0.0.

Introduction
Standby nodes can be added and deleted.

Benefits
If the read pressure of the primary node is high or you want to improve the
disaster recovery capability of the database, you need to add a standby node. If
some standby nodes in a cluster are faulty and cannot be recovered within a short
period of time, you can delete the faulty nodes to ensure that the cluster is
running properly.

Description
openGauss can be scaled out from a single node or one primary and multiple
standbys to one primary and eight standbys. Cascaded standby nodes can be
added. Standby nodes can be added when a faulty standby node exists in the
cluster. One primary and multiple standbys can be scaled in to a single node. A
faulty standby node can be deleted.

Standby nodes can be added or deleted online without affecting the primary node.

Enhancements
None.

Constraints
For adding a standby node:

● Ensure that the openGauss image package exists on the primary node.
● Ensure that the same users and user groups as those on the primary node

have been created on the new standby node.
● Ensure that the mutual trust of user root and the database management user

has been established between the existing database nodes and the new
nodes.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 27

● Ensure that the XML file has been properly configured and information about
the standby node to be scaled has been added to the installed database
configuration file.

● Ensure that only user root is authorized to run the scale-out command.
● Do not run the gs_dropnode command on the primary node to delete other

standby nodes at the same time.
● Ensure that the environment variables of the primary node have been

imported before the scale-out command is run.
● Ensure that the operating system of the new standby node is the same as that

of the primary node.
● Do not perform an primary/standby switchover or failover on other standby

nodes at the same time.

For deleting a standby node:

● Delete the standby node only on the primary node.
● Do not perform an primary/standby switchover or failover on other standby

nodes at the same time.
● Do not run the gs_expansion command on the primary node for scale-out at

the same time.
● Do not run the gs_dropnode command twice at the same time.
● Before deletion, ensure that the database management user trust relationship

has been established between the primary and standby nodes.
● Run this command as a database administrator.
● Before running commands, run the source command to import environment

variables of the primary node.

Dependencies
None.

2.11 Delaying Entering the Maximum Availability
Mode

Availability
This feature is available since openGauss 3.0.0.

Introduction
The primary node can be delayed to enter the maximum availability mode.

Benefits
When the primary node detects that the standby node exits due to network
instability or other reasons and the maximum availability mode is enabled on the
primary node, the primary node remains in the maximum protection mode within
a specified time window. After the time window expires, the primary node enters
the maximum availability mode.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 28

This prevents the primary node from frequently switching between the maximum
protection mode and maximum availability mode due to factors such as network
jitter and intermittent process disconnection.

Description
If most_available_sync is set to on, when synchronous standby nodes are faulty in
primary/standby scenarios and the number of configured synchronous standby
nodes is insufficient (for details, see the meaning of synchonous_standby_name),
setting keep_sync_window will retain the maximum protection mode within the
time window specified by keep_sync_window. That is, committing transactions on
the primary node is blocked, delaying the primary node to enter the maximum
availability mode.

If synchronous standby nodes recover from faults and the number of synchronous
standby nodes meets the configuration requirements, transactions are not blocked.

Enhancements
None.

Constraints
● This feature takes effect only when the maximum availability mode is

enabled.
● Enabling this feature may affect the RPO. If the primary node is faulty within

the configured timeout window, its transactions are committed locally but not
synchronized to the faulty synchronous standby nodes.

● This feature does not apply to cascaded standby nodes.

Dependencies
This feature depends on the maximum availability mode.

2.12 Parallel Logical Decoding

Availability
This feature is available since openGauss 3.0.0.

Introduction
Multi-thread parallel decoding is supported.

Benefits
The logical decoding performance is greatly improved and the decoding speed can
be improved from 3 to 5 Mbit/s to 100 Mbit/s in standard scenarios (16-core CPU,
128 GB memory, network bandwidth > 200 Mbit/s, 10 to 100 columns in a table,
0.1 KB to 1 KB data volume in a single row, insert as the main DML operation, no
flush transaction is involved, that is, number of statements in a single transaction
< 4096).

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 29

Description

When JDBC or pg_recvlogical is used for decoding, you can set parallel-decode-
num to a value greater than 1 and less than or equal to 20 to enable parallel
decoding. In this way, one read thread, multiple decoding threads, and one
sending thread are used to perform logical decoding, significantly improving the
decoding speed.

Enhancements

None.

Constraints
1. The hardware and network environment must be normal. The size of a logical

log is twice that of an Xlog. To ensure that the speed of the Xlog reaches 100
Mbit/s, the I/O bandwidth must be at least 200 Mbit/s. Resources need to be
reserved for the reader, decoder, and sender threads. The number of CPU
cores to be reserved must be the number of concurrent threads plus 2. For
example, if there are four concurrent threads, six CPU cores need to be
reserved. In actual scenarios, decoding on the standby node can meet the
requirements, and no special resource reservation planning is required. To
ensure that the decoding performance meets the requirements and minimize
the impact on services, you are advised to set up only one parallel decoding
connection on a standby node to ensure that the CPU, memory, and
bandwidth resources are sufficient.

2. The value of GUC parameter wal_level of the log level is logical.
3. The GUC parameter max_replication_slots is set to a value greater than or

equal to the number of physical streaming replication slots, backup slots, and
logical replication slots required by each DN.

4. The value of the decoding configuration option parallel-decode-num is
greater than 1 and less than or equal to 20, specifying the number of
concurrent decoding threads.

5. Decoding into DDL statements is not supported.
6. Decoding is not supported for column-store data and data page replication.
7. Distributed transactions cannot be decoded. Currently, decoding is performed

by DN, which cannot ensure consistency in distributed transaction decoding.
8. The size of a single tuple cannot exceed 1 GB. Decoding results may be larger

than inserted data. Therefore, it is recommended that the size of a single
tuple be less than or equal to 500 MB.

9. Decoding compressed tables into DML statements is not supported.
10. GaussDB Kernel supports the following data types for decoding: INTEGER,

BIGINT, SMALLILNT, TINYINT, SERIAL, SMALLSERIAL, BIGSERIAL, FLOAT,
DOUBLE PRECISION, DATE, TIME[WITHOUT TIME ZONE],
TIMESTAMP[WITHOUT TIME ZONE], CHAR(n), VARCHAR(n), and TEXT.

11. If the SSL connection is required, the GUC parameter ssl must be set to on.
12. Interval partitioned tables cannot be replicated.
13. After a DDL statement is executed in a transaction, the DDL statement and

subsequent statements are not decoded.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 30

14. To perform decoding on the standby node, set the GUC parameter
enable_slot_log to on on the corresponding host.

15. Currently, ultra-large CLOB decoding is not supported.
16. The same replication slot for decoding cannot be used between the primary

node and standby node or between different standby nodes at the same time.
Otherwise, data inconsistency will occur.

17. Do not perform operations on the replication slot on other nodes when the
logical replication slot is in use. To delete a replication slot, stop decoding in
the replication slot first.

Dependencies

Decoding is performed on the standby node.

2.13 DCF

Availability

This feature is available since openGauss 2.0.0.

Introduction

Distributed consensus framework (DCF) implements data synchronization based
on the Paxos algorithm. After the DCF mode is enabled, DNs support Paxos-based
replication and quorum capabilities.

Benefits

Primary DN selection and log replication are performed based on Paxos.
Compression and flow control are supported during the replication to prevent high
bandwidth usage. DCF provides capabilities such as log replication and cluster HA.
DCF supports automatic leader election, forcible minority startup, and dynamic
traffic adjustment for log replication. In addition, multiple Paxos-based roles are
provided and can be adjusted. You can query the instance status in the current
database.

DCF is a high-performance, highly mature, reliable, scalable, and easy-to-use
independent basic library. Other systems can easily interconnect with DCF through
interfaces to obtain the strong consistency, high availability, and automatic
disaster recovery capabilities provided by the Paxos algorithm.

Description
● During log replication, DCF supports log compression before transmission to

reduce network bandwidth usage.
● DCF supports SSL, including TLS 1.2 and TLS 1.3. When SSL is enabled, the DN

configures DCF as TLS 1.2 by default.
● DCF supports five TLS 1.3 cipher suites: TLS13-AES-256-GCM-SHA384, TLS13-

CHACHA20-POLY1305-SHA256, TLS13-AES-128-GCM-SHA256, TLS13-
AES-128-CCM-8-SHA256 and TLS13-AES-128-CCM-SHA256.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 31

● DCF supports passive nodes, which do not participate in leader election and
only synchronize and replay logs. When this type of nodes is heavily loaded
during log synchronization, flow control is performed.

● DCF supports logger nodes, which participate in leader election and voting.
However, the logger nodes only replicate DCF logs. Xlogs are not replicated
and redo is not performed.

● DCF supports online switchover between follower and passive nodes. That is,
without interrupting services, a node can switch over between the follower
and passive roles.

● DCF supports forcible startup of the minority of DNs. In case that the majority
of database instances are faulty, a minority of standby DNs are selected and
forcibly promoted to primary, and other normal standby DNs replicate logs
from the primary DNs.

● DCF supports automatic leader election. When the original primary DN is
faulty, a new primary DN is automatically selected from the remaining
standby DNs on the premise that data consistency is ensured.

Enhancements

None.

Constraints

To use this function, you need to enable DCF during installation and deployment.
In DCF mode, the majority election is used. During the installation, if the number
of faulty nodes and build nodes reaches the majority, the cluster installation will
fail. For example, when one primary node and two standby nodes are installed,
one node fails to be installed due to insufficient memory, but the other two nodes
can be started normally. A standby node will be built again. In this case, the
number of build nodes and faulty nodes is 2, which is the majority, and the cluster
installation will fail. During the installation, check whether the memory and disk
resources are sufficient.

Dependencies

None.

2.14 CM

Availability

This feature is available since openGauss 3.0.0.

Introduction

Cluster manager (CM) is a database management software, which consists of
cm_server and cm_agent.

● cm_agent is a database management component deployed on each database
host. It is used to start, stop, and monitor database instance processes.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 32

● cm_server is a component used for managing database instances and
arbitrating instances.

Benefits
It manages and monitors the running status of functional units and physical
resources in a database system, ensuring stable running of the system.

Description
It supports customized resource monitoring and provides capabilities such as
monitoring of the primary/standby database status, network communication
faults, file system faults, and automatic primary/standby switchover upon faults. It
also provides various database management capabilities, such as starting and
stopping nodes and instances, querying database instance status, performing
primary/standby switchover, and managing logs.

Enhancements
None.

Constraints
In scenarios where there are one primary node and one standby node, CM
supports only basic capabilities, such as installation, startup, stop, and detection.

Dependencies
None.

2.15 Global SysCache

Availability
This feature is available since openGauss 3.0.0.

Introduction
Global SysCache is the global and local caches of system catalog data. Figure 2-1
illustrates the principle.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 33

Figure 2-1 Global SysCache principle

Benefits
Global SysCache reduces the cache memory usage of database processes and
improves the concurrent expansion capability of a database.

Description
Global SysCache decouples the system cache from sessions and binds them to
threads to reduce the memory usage together with the thread pool feature. In
addition, it is used to improve the cache hit rate and ensure stable performance.

Enhancements
Supports more concurrent queries.

Constraints
● Set enable_global_syscache to on. You are advised to set

enable_thread_pool to on.
● When the number of databases is large and the value of

global_syscache_threshold is small, memory control cannot work properly
and the performance deteriorates.

● Distributed time series tasks are not supported. The memory control and
performance of these tasks are not affected by the GSC feature.

● If wal_level is set to minimal or archive, the query performance of the
standby server deteriorates and short connections are used.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 34

Dependencies
The memory reduction capability of this feature depends on the thread pool
feature.

2.16 Using a Standby Node to Build a Standby Node

Availability
This feature is available since openGauss 3.0.0.

Introduction
A standby node can be built by another standby node to accelerate standby node
recovery from faults. The I/O and bandwidth pressure of the primary node can be
reduced.

Benefits
When the service load is heavy, building a standby node by using the primary
node increases the resource burden on the primary node. As a result, the
performance of the primary node deteriorates and the build becomes slow.
Building a standby node by using a standby node does not affect services on the
primary node.

Description
You can run the gs_ctl command to specify a standby node to build another
standby node to be repaired. For details, see "Tools Used in the Internal System >
gs_ctl" in Tool Reference.

Enhancements
None.

Constraints
A standby node can only be used to build another standby node. You can only use
a specified IP address and port number to build the standby node. Before building
the standby node, ensure that the logs of the standby node to be repaired are
later than those of the standby node that sends data.

Dependencies
None.

openGauss
Feature Description 2 High Availability (HA)

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 35

3 Maintainability

3.1 Gray Upgrade

3.2 WDR

3.3 Slow SQL Diagnosis

3.4 Session Performance Diagnosis

3.5 System KPI-aided Diagnosis

3.1 Gray Upgrade

Availability
This feature is available since openGauss 2.0.0.

Introduction
Gray upgrade supports full-service operations. All nodes can be upgraded at a
time.

Benefits
Gray upgrade provides an online upgrade mode to ensure that all nodes are
upgraded without interrupting services.

Description
Gray upgrade is an online upgrade mode that upgrades all nodes. If only the
binary files of the database need to be replaced during the gray upgrade, to
minimize the impact on services, the two sets of binary files exist on the same
node at the same time, and the soft connection switchover mode is used to switch
the process version (one intermittent disconnection within 10 seconds).

Enhancements
None.

openGauss
Feature Description 3 Maintainability

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 36

Constraints

For details about the gray upgrade constraints, see "Before You Start > Upgrade
Impact and Constraints" in Upgrade Guide.

Dependencies

None.

3.2 WDR

Availability

This feature is available since openGauss 1.0.0.

Introduction

The workload diagnosis report (WDR) provides database performance diagnosis
reports based on the baseline performance and incremental data that reflects
performance changes.

Benefits
● The WDR is the main method for diagnosing long-term performance

problems. Based on the performance baseline of a snapshot, performance
analysis is performed from multiple dimensions, helping DBAs understand the
system load, performance of each component, and performance bottlenecks.

● Snapshots are also an important data source for self-diagnosis and self-
optimization suggestions on subsequent performance problems.

Description

The WDR generates a performance report between two different time points
based on the system performance snapshot data at these time points. The report
is used to diagnose database kernel performance faults.

You can use generate_wdr_report(...) to generate a performance report based on
two performance snapshots.

The WDR depends on the following two components:

● Snapshot: The performance snapshot can be configured to collect a certain
amount of performance data from the kernel at a specified interval and store
the data in the user tablespace. Any snapshot can be used as a performance
baseline for comparison with other snapshots.

● WDR Reporter: This tool analyzes the overall system performance based on
two snapshots, calculates the changes of more specific performance indicators
between the two time points, and generates summarized and detailed
performance data. For details, see Table 3-1 and Table 3-2.

openGauss
Feature Description 3 Maintainability

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 37

Table 3-1 Summarized diagnosis report

Diagnosis Type Description

Database Stat Evaluates the load and I/O status of the current database.
Load and I/O are the most important indicators of the TP
system.
The statistics include the number of sessions connected to
the database, number of committed and rolled back
transactions, number of read disk blocks, number of disk
blocks found in the cache, number of rows returned,
captured, inserted, updated, and deleted through database
query, number of conflicts and deadlocks, usage of
temporary files, and I/O read/write time.

Load Profile Evaluates the current system load from the time, I/O,
transaction, and SQL dimensions.
The statistics include the job running elapse time, CPU
time, daily transaction quality, logical and physical read
volume, read and write I/O times and size, login and logout
times, SQL, transaction execution volume, and SQL P80 and
P95 response time.

Instance
Efficiency
Percentages

Evaluates the cache efficiency of the current system.
The statistics include the database cache hit ratio.

Events Evaluates the performance of key system kernel resources
and key events.
The statistics include the number of times that the key
events of the database kernel occur and the waiting time.

Wait Classes Evaluates the performance of key events in the system.
The statistics include the release of the data kernel in the
main types of wait events, such as STATUS,
LWLOCK_EVENT, LOCK_EVENT, and IO_EVENT.

CPU Includes time release of the CPU in user mode, kernel
mode, I/O wait mode, or idle mode.

IO Profile Includes the number of database I/O times, database I/O
data volume, number of redo I/O times, and redo I/O
volume.

Memory Statistics Includes maximum process memory, used process memory,
maximum shared memory, and used shared memory.

openGauss
Feature Description 3 Maintainability

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 38

Table 3-2 Detailed diagnosis report

Diagnosis Type Description

Time Model Evaluates the performance of the current system in the
time dimension.
The statistics include time consumed by the system in each
phase, including the kernel time, CPU time, execution time,
parsing time, compilation time, query rewriting time, plan
generation time, network time, and I/O time.

SQL Statistics Diagnoses SQL statement performance problems.
The statistics include normalized SQL performance
indicators in multiple dimensions: elapsed time, CPU time,
rows returned, tuple reads, executions, physical reads, and
logical reads. The indicators can be classified into execution
time, number of execution times, row activity, and cache
I/O.

Wait Events Diagnoses performance of key system resources and key
time in detail.
The statistics include the performance of all key events in a
period of time, including the number of events and the
time consumed.

Cache IO Stats Diagnoses the performance of user tables and indexes.
The statistics include read and write operations on all user
tables and indexes, and the cache hit ratio.

Utility status Diagnoses the background task performance.
The statistics include the performance of background tasks
such as replication.

Object stats Diagnoses the performance of database objects.
The statistics include user tables, tables on indexes, index
scan activities, as well as insert, update, and delete
activities, number of valid rows, and table maintenance
status.

Configuration
settings

Determines whether the configuration is changed.
It is a snapshot that contains all current configuration
parameters.

SQL detail Displays information about unique query text.

Enhancements
None.

openGauss
Feature Description 3 Maintainability

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 39

Constraints
● The WDR snapshot collects performance data of different databases. If there

are a large number of databases or tables in the database instance, it takes a
long time to create a WDR snapshot.

● If WDR snapshot is performed when a large number of DDL statements are
executed, WDR snapshot may fail.

● When the database is dropped, WDR snapshot may fail.

Dependencies
None.

3.3 Slow SQL Diagnosis

Availability
This feature is available since openGauss 1.1.0. The following slow SQL views have
been discarded before reconstruction: dbe_perf.gs_slow_query_info,
dbe_perf.gs_slow_query_history, dbe_perf.global_slow_query_hisotry, and
dbe_perf.global_slow_query_info.

Introduction
Slow SQL diagnosis provides necessary information for diagnosing slow SQL
statements, helping developers backtrack SQL statements whose execution time
exceeds the threshold and diagnose SQL performance bottlenecks.

Benefits
Slow SQL provides detailed information required for slow SQL diagnosis. You can
diagnose performance problems of specific slow SQL statements offline without
reproducing the problem. The table-based and function-based APIs help users
collect statistics on slow SQL indicators and connect to third-party platforms.

Description
Slow SQL diagnosis records information about all jobs whose execution time
exceeds the threshold log_min_duration_statement.

Slow SQL provides table-based and function-based query APIs. You can query the
execution plan, start time, end time, query statement, row activity, kernel time,
CPU time, execution time, parsing time, compilation time, query rewriting time,
plan generation time, network time, I/O time, network overhead, and lock
overhead. All information is anonymized.

Enhancements
Optimized slow SQL indicators, security (anonymization), execution plans, and
query interfaces.

Run the following command to check the execution information about the SQL statements in the database
instance:

openGauss
Feature Description 3 Maintainability

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 40

gsql> select * from dbe_perf.get_global_full_sql_by_timestamp(start_timestamp, end_timestamp);
For example:
openGauss=# select * from DBE_PERF.get_global_full_sql_by_timestamp('2020-12-01 09:25:22', '2020-12-31
23:54:41');
-[RECORD 1]--------
+---

node_name | dn_6001_6002_6003
db_name | postgres
schema_name | "$user",public
origin_node | 1938253334
user_name | user_dj
application_name | gsql
client_addr |
client_port | -1
unique_query_id | 3671179229
debug_query_id | 72339069014839210
query | select name, setting from pg_settings where name in (?)
start_time | 2020-12-19 16:19:51.216818+08
finish_time | 2020-12-19 16:19:51.224513+08
slow_sql_threshold | 1800000000
transaction_id | 0
thread_id | 139884662093568
session_id | 139884662093568
n_soft_parse | 0
n_hard_parse | 1
query_plan | Datanode Name: dn_6001_6002_6003
 | Function Scan on pg_show_all_settings a (cost=0.00..12.50 rows=5 width=64)
 | Filter: (name = '***'::text)
...

Run the following command to check the execution information about the slow SQL statements in the
database instance:
gsql> select * from dbe_perf.get_global_slow_sql_by_timestamp(start_timestamp, end_timestamp);
openGauss=# select * from DBE_PERF.get_global_slow_sql_by_timestamp('2020-12-01 09:25:22',
'2020-12-31 23:54:41');
-[RECORD 1]--------+---
node_name | dn_6001_6002_6003
db_name | postgres
schema_name | "$user",public
origin_node | 1938253334
user_name | user_dj
application_name | gsql
client_addr |
client_port | -1
unique_query_id | 2165004317
debug_query_id | 72339069014839319
query | select * from DBE_PERF.get_global_slow_sql_by_timestamp(?, ?);
start_time | 2020-12-19 16:23:20.738491+08
finish_time | 2020-12-19 16:23:20.773714+08
slow_sql_threshold | 10000
transaction_id | 0
thread_id | 139884662093568
session_id | 139884662093568
n_soft_parse | 10
n_hard_parse | 8
query_plan | Datanode Name: dn_6001_6002_6003
 | Result (cost=1.01..1.02 rows=1 width=0)
 | InitPlan 1 (returns $0)
 | -> Seq Scan on pgxc_node (cost=0.00..1.01 rows=1 width=64)
 | Filter: (nodeis_active AND ((node_type = '***'::"char") OR (node_type = '***'::"char")))
...

Check the execution information about the SQL statement on the current node.
gsql> select * from statement_history;
For example:
openGauss=# select * from statement_history;
-[RECORD 1]--------
+---

openGauss
Feature Description 3 Maintainability

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 41

db_name | postgres
schema_name | "$user",public
origin_node | 1938253334
user_name | user_dj
application_name | gsql
client_addr |
client_port | -1
unique_query_id | 3671179229
debug_query_id | 72339069014839210
query | select name, setting from pg_settings where name in (?)
start_time | 2020-12-19 16:19:51.216818+08
finish_time | 2020-12-19 16:19:51.224513+08
slow_sql_threshold | 1800000000
transaction_id | 0
thread_id | 139884662093568
session_id | 139884662093568
n_soft_parse | 0
n_hard_parse | 1
query_plan | Datanode Name: dn_6001_6002_6003
 | Function Scan on pg_show_all_settings a (cost=0.00..12.50 rows=5 width=64)
 | Filter: (name = '***'::text)

Constraints
● The SQL tracing information is based on the normal execution logic. The

tracing information may inaccurate if SQL statements fail to be executed.

● Restarting a node may cause data loss on the node.

● If you exit a session immediately after SQL statements are executed, the
session data that is not updated to the system catalog may be lost.

● The number of SQL statements to be collected is specified by a GUC
parameter. If the number of SQL statements exceeds the threshold, new SQL
statement execution information will not be collected.

● The maximum number of bytes of lock event details collected by a single SQL
statement is specified by a GUC parameter. If the number of bytes exceeds
the threshold, new lock event details will not be collected.

● The SQL statement information is updated in asynchronous mode. Therefore,
after a query statement is executed, the related view function result is slightly
delayed.

● Certain indicator information (such as row activities, cache I/O, and time
distribution) depends on the dbe_perf.statement view. If the number of
records in the view exceeds the preset size (depending on
GUC:instr_unique_sql_count), related indicators may not be collected.

● Functions related to the statement_history table and the details column in the
view are in binary format. To parse the detailed information, use the
pg_catalog.statement_detail_decode(details, 'plaintext', true) function.

● The statement_history table can be queried only in the postgres database. The
data in other databases is empty.

● The content of the statement_history table is controlled by
track_stmt_stat_level. The default value is 'OFF,L0'. The first part of the
parameter indicates the full SQL statement, and the second part indicates the
slow SQL statement. Slow SQL statements are recorded in the
statement_history table only when the SQL statement execution time exceeds
the value of log_min_duration_statement.

openGauss
Feature Description 3 Maintainability

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 42

Dependencies

None.

3.4 Session Performance Diagnosis

Availability

This feature is available since openGauss 1.0.0.

Introduction

Session performance diagnosis targets session-level performance faults.

Benefits
● Display the latest events that consume the most resources of user sessions.

● Check the wait events that occupy the most resource-consuming SQL
statements.

● Check the wait events that occupy the most resource-consuming sessions.

● Check information about the most resource-consuming users.

● Check the waiting relationship between blocked sessions.

Description

The session performance diagnosis function diagnoses performance of all active
sessions in the system. As real-time collection of indicators of all active sessions
has a greater impact on user load, the session snapshot technology is used to
sample indicators of active sessions, and collect statistics on active sessions from
the sampling. The statistics reflect the basic information, status, and resources of
active sessions from the dimensions of client information, execution start time,
execution end time, SQL text, wait events, and current database objects. The
active session information collected based on the probability can help users
diagnose which sessions consume more CPU and memory resources, which
database objects are hot objects, and which SQL statements consume more key
event resources in the system. In this way, users can locate faulty sessions, SQL
statements, and database designs.

Session sampling data is classified into two levels, as shown in Figure 3-1.

1. The first level is real-time information stored in the memory. The active
session information in the latest several minutes is displayed, which has the
highest precision.

2. The second level is the persistent historical information stored in disk files. It
displays the historical active session information in a long period of time and
is sampled from the memory data. This level is suitable for long-run statistics
and analysis.

openGauss
Feature Description 3 Maintainability

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 43

Figure 3-1 Session performance diagnosis principle

Some application scenarios are as follows:

1. Check the blocking relationship between sessions.
select sessionid, block_sessionid from pg_thread_wait_status;

2. Sample information about blocked sessions.
select sessionid, block_sessionid from DBE_PERF.local_active_session;

3. Display the final blocked session.
select sessionid, block_sessionid, final_block_sessionid from DBE_PERF.local_active_session;

4. Check the wait event that consumes the most resources.
SELECT s.type, s.event, t.count
FROM dbe_perf.wait_events s, (
SELECT event, COUNT(*)
FROM dbe_perf.local_active_session
WHERE sample_time > now() - 5 / (24 * 60)
GROUP BY event)t WHERE s.event = t.event ORDER BY count DESC;

5. Check the events that consume the most session resources in the last five
minutes.
SELECT sessionid, start_time, event, count
FROM (
SELECT sessionid, start_time, event, COUNT(*)
FROM dbe_perf.local_active_session
WHERE sample_time > now() - 5 / (24 * 60)
GROUP BY sessionid, start_time, event) as t ORDER BY SUM(t.count) OVER (PARTITION BY t.
sessionid, start_time)DESC, t.event;

6. Check the events that consume the most resources in the last five minutes.
SELECT query_id, event, count
FROM (
SELECT query_id, event, COUNT(*)
FROM dbe_perf.local_active_session
WHERE sample_time > now() - 5 / (24 * 60)
GROUP BY query_id, event) t ORDER BY SUM(t.count) OVER (PARTITION BY t.query_id) DESC,
t.event DESC;

Enhancements
None.

Constraints
None.

openGauss
Feature Description 3 Maintainability

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 44

Dependencies
None.

3.5 System KPI-aided Diagnosis

Availability
This feature is available since openGauss 1.0.0.

Introduction
KPIs are views of key performance indicators for kernel components or the entire
system. Based on KPIs, users can learn about the real-time and historical running
status of the system.

Benefits
● Summarized system load diagnosis

Precise alarms for system load exceptions (overload, stall, and SLA
exceptions) and precise system load profile

● Summarized system time model diagnosis
Instance-level and query-level time model segmentation, diagnosing the root
causes of instance and query performance problems

● Query performance diagnosis
Database-level query summary, including top SQL, SQL CPU usage, I/O
consumption, execution plan, and excessive hard parsing

● Diagnosis of disk I/O, index, and buffer performance problems
● Diagnosis of connection and thread pool problems
● Diagnosis of checkpoint and redo (RTO) performance problems
● Diagnosis of system I/O, LWLock, and wait performance problems

Diagnosis of over 60 modules and over 240 key operation performance
problems

● Function-level performance monitoring and diagnosis (by GSTRACE)
Tracing of over 50 functions at the storage and execution layers

Description
openGauss provides KPIs of 11 categories and 26 sub-categories, covering
instances, files, objects, workload, communication, sessions, threads, cache I/O,
locks, wait events, and clusters.

Figure 3-2 shows the distribution of kernel KPIs.

openGauss
Feature Description 3 Maintainability

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 45

Figure 3-2 Distribution of kernel KPIs

Enhancements

None.

Constraints
● Utility statements do not support normalization. Non-DML statements, such

as CREATE, DROP, COPY, and VACUUM, are not supported.
● Currently, only the top-level normalized SQL statements are recorded. SQL

statements in a stored procedure are not normalized, and only the SQL
statements that call the stored procedure are recorded.

Dependencies

None.

openGauss
Feature Description 3 Maintainability

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 46

4 Database Security

4.1 Access Control Model

4.2 Separation of Control and Access Permissions

4.3 Database Encryption Authentication

4.4 Data Encryption and Storage

4.5 Database Audit

4.6 Network Communication Security

4.7 Resource Label

4.8 Unified Audit

4.9 Dynamic Data Masking

4.10 Row-Level Access Control

4.11 Password Strength Verification

4.12 Equality Query in a Fully-encrypted Database

4.13 Ledger Database Mechanism

4.14 Transparent Data Encryption

4.1 Access Control Model

Availability
This feature is available since openGauss 1.1.0.

Introduction
The access control model can be used to manage users' access permissions and
grant them the minimum permissions required for completing a task.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 47

Benefits

You can create users and grant permissions to them as needed to minimize risks.

Description

The database provides a role-based access control model and an access control
model based on the separation of duties. In the role-based access control model,
database roles are classified into system administrator, monitoring administrator,
O&M administrator, security policy administrator, and common user. The security
administrator creates roles or user groups and grant permissions to roles. The
monitoring administrator views the monitoring views or functions in dbe_perf
mode. The security policy administrator creates resource labels, anonymization
policies, and unified audit policies. A user who is assigned a role has the role's
permissions.

In the access control model based on the separation of duties, database roles are
classified into system administrator, security administrator, audit administrator,
monitoring administrator, O&M administrator, security policy administrator, and
common user. The security administrator creates users, the system administrator
grants permissions to users, and the audit administrator audits all user behavior.

By default, the role-based access control model is used. To switch to another
mode, set the GUC parameter enableSeparationOfDuty to on.

Enhancements

None.

Constraints

The permissions of the system administrator are controlled by the GUC parameter
enableSeparationOfDuty.

The database needs to be restarted when the separation of duties is enabled,
disabled or switched. In addition, improper user permissions in the new model
cannot be automatically identified. The database administrator needs to manually
identify and rectify the fault.

Dependencies

None.

4.2 Separation of Control and Access Permissions

Availability

This feature is available since openGauss 1.1.0.

Introduction

The control permissions and the access permissions can be separated.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 48

Benefits
The control permissions of database administrators for tables need to be isolated
from their access permissions to improve the data security of common users.

Description
If multiple business departments use different database users to perform service
operations and a database maintenance department at the same level uses
database administrators to perform O&M operations, the business departments
may require that database administrators can only perform control operations
(DROP, ALTER, and TRUNCATE) and cannot perform access operations (INSERT,
DELETE, UPDATE, SELECT, and COPY) without authorization. That is, the control
permissions of database administrators for tables need to be isolated from their
access permissions to improve the data security of common users.

In separation-of-duties mode, a database administrator does not have permissions
for the tables in schemas of other users. In this case, database administrators have
neither control permissions nor access permissions. This does not meet the
requirements of the business departments mentioned above. Therefore,
openGauss provides private users to solve the problem. That is, create private
users with the INDEPENDENT attribute in non-separation-of-duties mode. Users
with the CREATEROLE permission or the system administrator permission can
create private users or change the attributes of common users to private users.
Common users can also change their own attributes to private users.

openGauss=# CREATE USER user_independent WITH INDEPENDENT IDENTIFIED BY "1234@abc";

System administrators can manage (DROP, ALTER, and TRUNCATE) table objects
of private users but cannot access (INSERT, DELETE, SELECT, UPDATE, COPY,
GRANT, REVOKE, and ALTER OWNER) the objects before being authorized.

Enhancements
None.

Constraints
For a table owned by a private user, grant the trigger permission of the table to
other users with caution to prevent other users from using the trigger to view the
data of the private user.

If permissions related to private user tables are granted to non-private users, the
system administrator will obtain the same permissions.

Dependencies
None.

4.3 Database Encryption Authentication

Availability
This feature is available since openGauss 1.1.0.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 49

Introduction
The client/server (C/S) mode-based client connection authentication mechanism is
provided.

Benefits
The unidirectional, irreversible hash encryption algorithm PBKDF2 is used for
encryption and authentication, effectively defending against rainbow attacks.

Description
openGauss uses a basic client connection authentication mechanism. After a client
initiates a connection request, the server verifies the information and sends the
information required for authentication to the client based on the verification
result. The authentication information includes the salt, token, and server
signature. The client responds to the request and sends the authentication
information to the server. The server calls the authentication module to
authenticate the client authentication information. The user password is encrypted
and stored in the memory. During the entire authentication process, passwords are
encrypted for storage and transmission. When the user logs in to the system next
time, the hash value is calculated and compared with the key value stored on the
server to verify the correctness.

Enhancements
The message processing flow in the unified encryption and authentication process
effectively prevents attackers from cracking the username or password by
capturing packets.

Constraints
None.

Dependencies
None.

4.4 Data Encryption and Storage

Availability
This feature is available since openGauss 1.1.0.

Introduction
Imported data is encrypted before stored.

Benefits
You can use encrypted import interfaces to encrypt sensitive information and store
it in a table.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 50

Description
openGauss provides the encryption functions gs_encrypt_aes128() and
gs_encrypt(), and decryption functions gs_decrypt_aes128() and gs_decrypt().
Before you import data to a certain column in a table, you can use this function to
encrypt the data. The function can be called using a statement in the following
format:

gs_encrypt_aes128(column, key), gs_encrypt (decryptstr, keystr, decrypttype)

In the preceding command, key indicates the initial password specified by the user,
which is used to derive the encryption key. To encrypt an entire table, you need to
write an encryption function for each column.

If a user with the required permission wants to view specific data, the user can
decrypt required columns using the decryption function interface
gs_decrypt_aes128(column, key). To invoke the interface, run the following
command:

gs_decrypt_aes128(column, key), gs_decrypt(decryptstr, keystr, decrypttype)

Enhancements
None.

Constraints
None.

Dependencies
None.

4.5 Database Audit

Availability
This feature is available since openGauss 1.1.0.

Introduction
Audit logs record user operations performed on database startup and stopping, as
well as connection, DDL, DML, and DCL operations.

Benefits
The audit log mechanism enhances the database capability of tracing
unauthorized operations and collecting evidence.

Description
Database security is essential for a database system. openGauss writes all user
operations in the database into audit logs. Database security administrators can
use the audit logs to reproduce a series of events that cause faults in the database

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 51

and identify unauthorized users, unauthorized operations, and the time when
these operations are performed.

Enhancements

None.

Constraints

None.

Dependencies

None.

4.6 Network Communication Security

Availability

This feature is available since openGauss 1.1.0.

Introduction

To secure the transmission of sensitive data on the Internet, openGauss encrypts
communication between the server and the client using the Secure Socket Layer
(SSL) protocol.

Benefits

The communication between your client and the server can be secured.

Description

openGauss supports the SSL protocol. The SSL protocol is an application-layer
communication protocol with high security, which is mainly used for secure web
transmission. SSL contains a record layer and a transport layer. The record-layer
protocol determines the encapsulation format of the transport-layer data. The
transport-layer security protocol uses X.509 for authentication. The SSL protocol
uses asymmetric encryption algorithms to authenticate the identities of
communicating parties, and then the two parties exchange symmetric keys as
communication keys. The SSL protocol effectively ensures the confidentiality and
reliability of the communication between two applications and prevents the
communication between a client and a server from being eavesdropped by
attackers.

openGauss also supports the TLS 1.2 protocol. TLS 1.2 is a transport-layer
communication protocol with high security. It consists of the TLS Record and TLS
Handshake protocols. Each protocol suit has information in multiple formats. The
TLS protocol is independent of application-layer protocols. Upper-layer protocols
can be transparently distributed on the TLS protocol. The TLS protocol ensures the
data confidentiality and integrity for both communication parties.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 52

Enhancements

Checking the strength of certificate signature algorithms: For low-strength
signature algorithms, alarms are reported, reminding you to replace the certificate
with another certificate containing a high-strength signature algorithm.

Checking the certificate validity period: If a certificate is about to expire in less
than seven days, an alarm is reported, reminding you to replace the certificate on
the client.

Checking certificate permissions: The certificate permissions are verified at the
connection setup stage.

Constraints

The formal certificates and keys for servers and clients shall be obtained from the
Certificate Authority (CA). Assume the private key and certificate for a server are
server.key and server.crt, the private key and certificate for the client are
client.key and client.crt, and the CA root certificate is cacert.pem.

You need to enable the SSL protocol and configure the certificate and connection
mode.

Dependencies

OpenSSL

4.7 Resource Label

Availability

This feature is available since openGauss 1.1.0.

Introduction

Database resources refer to database objects, such as databases, schemas, tables,
columns, views, and triggers. The more the database objects are, the more
complex the classification management of database resources is. The resource
label mechanism is a technology that classifies and labels database resources with
certain features to implement resource classification management. After adding
labels to some resources in a database, administrators can perform operations
such as data audit or anonymization using the labels to implement security
management on labeled database resources.

Benefits

Proper resource labels can be used to effectively classify data objects, improve
management efficiency, and simplify security policy configuration. To perform
unified audit or data anonymization on a group of database resources, the
administrator can allocate a resource label to these resources first. The label
indicates that the database resources have a certain feature or require unified
configuration of a certain policy. The administrator can directly perform operations

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 53

on the resource label, which greatly reduces the complexity of policy configuration
and information redundancy as well as improves management efficiency.

Description
The resource label mechanism selectively classifies resources in the current
database. Administrators can use the following SQL syntax to create a resource
label and add the label to a group of database resources:

CREATE RESOURCE LABEL schm_lb ADD SCHEMA(schema_for_label);
CREATE RESOURCE LABEL tb_lb ADD TABLE(schema_for_label.table_for_label);
CREATE RESOURCE LABEL col_lb ADD COLUMN(schema_for_label.table_for_label.column_for_label);
CREATE RESOURCE LABEL multi_lb ADD SCHEMA(schema_for_label), TABLE(table_for_label);

schema_for_label, table_for_label, and column_for_label indicate the schema,
table, and column to be labeled, respectively. The schm_lb label is added to
schema schm_for_label, tb_lb is added to table table_for_label, col_lb is added
to column column_for_label, and multi_lb is added to schema schm_for_label
and table table_for_label. You can perform unified audit or dynamic data
anonymization using the configured resource labels, that is, manage all labeled
database resources.

Currently, resource labels support the following database resource types: schema,
table, column, view, and function.

Enhancements
None.

Constraints
● Resource labels can be created only by a user with the POLADMIN and

SYSADMIN attributes or an initial user.
● Resource labels cannot be created for temporary tables.
● Columns in the same basic table can belong to only one resource tag.

Dependencies
None.

4.8 Unified Audit

Availability
This feature is available since openGauss 1.1.0.

Introduction
The audit mechanism is a security management solution that can effectively deal
with the attackers' repudiation. The larger the audit scope is, the more operations
can be monitored and the more audit logs are generated, affecting the actual
audit efficiency. The unified audit mechanism is a technology that implements
efficient security audit management by customizing audit policies. After the

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 54

administrator defines the audit object and audit behaviors, if the task executed by
a user is associated with an audit policy, the corresponding audit behavior is
generated and the audit log is recorded. Customized audit policies can cover
common user management activities, as well as DDL and DML operations,
meeting routine audit requirements.

Benefits

Audit is indispensable for routine security management. When a traditional audit
mechanism is used to audit an operation, such as SELECT, a large number of audit
logs are generated, increasing the I/O of the entire system and affecting the
system performance and audit efficiency of administrators. The unified audit
mechanism allows you to customize policies for generating audit logs. For
example, only the operation that database account A queries table a is audited.
Customized audit greatly reduces the number of generated audit logs, ensuring
audit behaviors and reducing the impact on system performance. In addition,
customized audit policies can improve the audit efficiency of administrators.

Description

The unified audit mechanism customizes audit behaviors based on resource labels
and classifies the supported audit behaviors into the ACCESS and PRIVILEGES
classes. The SQL syntax for creating a complete audit policy is as follows:

CREATE RESOURCE LABEL auditlabel add table(table_for_audit1, table_for_audit2);
CREATE AUDIT POLICY audit_select_policy ACCESS SELECT ON LABEL(auditlabel) FILTER ON ROLES(usera);
CREATE AUDIT POLICY audit_admin_policy PRIVILEGES ALTER, DROP ON LABEL(auditlabel) FILTER ON
IP(local);

auditlabel indicates the resource label in the current audit, which contains two
table objects. audit_select_policy defines the audit policy for user usera to audit
the SELECT operation on the objects with the auditlabel label, regardless of the
access source. audit_admin_policy defines a local audit policy for ALTER and
DROP operations on the objects with the auditlabel label, regardless of the user.
If ACCESS and PRIVILEGES are not specified, all DDL and DML operations on
objects with a resource label are audited. If no audit objects are specified,
operations on all objects are audited. The addition, deletion, and modification of
unified audit policies are also recorded in unified audit logs.

Currently, unified audit supports the following audit behaviors:

SQL Type Supported operations and object types

DDL Operations: ALL, ALTER, ANALYZE, COMMENT, CREATE, DROP,
GRANT, and REVOKE
SET SHOW
Objects: DATABASE, SCHEMA, FUNCTION, TRIGGER, TABLE,
SEQUENCE, FOREIGN_SERVER, FOREIGN_TABLE, TABLESPACE,
ROLE/USER, INDEX, VIEW, and DATA_SOURCE

DML Operations: ALL, COPY, DEALLOCATE, DELETE, EXECUTE,
REINDEX, INSERT, PREPARE, SELECT, TRUNCATE, and UPDATE

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 55

Enhancements
None.

Constraints
● The unified audit policy must be created by a user with the POLADMIN or

SYSADMIN attribute, or by the initial user. Common users do not have the
permission to access the security policy system catalog and system view.

● The syntax of a unified audit policy applies to either DDL or DML operations.
DDL operations and DML operations are mutually exclusive in an audit policy.
A maximum of 98 unified audit policies can be configured.

● Unified audit monitors the SQL statements executed by users on the clients,
but does not record the internal SQL statements of databases.

● In the same audit policy, the same resource tag can be bound to different
audit behaviors, and the same behavior can be bound to different resource
tags. The ALL operation type includes all operations supported by DDL or
DML.

● A resource label can be associated with different unified audit policies. Unified
audit outputs audit information in sequence based on the policies matched by
SQL statements.

● Audit logs of unified audit policies are recorded separately. Currently, no
visualized query interfaces are provided. Audit logs depend on the OS service
Rsyslog and are archived through the service configuration.

● In cloud service scenarios, logs need to be stored in the OBS. In hybrid cloud
scenarios, you can deploy Elasticsearch to collect CN logs and perform
visualized processing.

● It is recommended that APP in FILTER be set to applications in the same
trusted domain. Since a client may be forged, a security mechanism must be
formed on the client when APP is used to reduce misuse risks. Generally, you
are not advised to set APP. If it is set, pay attention to the risk of client
spoofing.

● Taking an IPv4 address as an example, the following formats are supported:

IP Address
Format

Example

Single IP
address

127.0.0.1

IP address
with mask

127.0.0.1|255.255.255.0

CIDR IP
address

127.0.0.1/24

IP address
segment

127.0.0.1-127.0.0.5

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 56

Dependencies
None.

4.9 Dynamic Data Masking

Availability
This feature is available since openGauss 1.1.0.

Introduction
Data masking is an effective database privacy protection solution, which can
prevent attackers from snooping on private data. The dynamic data masking
mechanism is a technology that protects privacy data by customizing masking
policies. It can effectively prevent unauthorized users from accessing sensitive
information while retaining original data. After the administrator specifies the
object to be anonymized and customizes a data masking policy, if the database
resources queried by a user are associated with a masking policy, data is
anonymized based on the user identity and masking policy to restrict attackers'
access to privacy data.

Benefits
Data privacy protection is one of the required database security capabilities. It can
restrict attackers' access to privacy data, ensuring privacy data security. The
dynamic data masking mechanism can protect the privacy of specified database
resources by configuring masking policies. In addition, the masking policy
configuration is flexible and can implement targeted privacy protection in specific
user scenarios.

Description
The dynamic data masking mechanism customizes masking policies based on
resource labels. It can select masking modes based on the site requirements or
customize masking policies for specific users. The SQL syntax for creating a
complete masking policy is as follows:
CREATE RESOURCE LABEL label_for_creditcard ADD COLUMN(user1.table1.creditcard);
CREATE RESOURCE LABEL label_for_name ADD COLUMN(user1.table1.name);
CREATE MASKING POLICY msk_creditcard creditcardmasking ON LABEL(label_for_creditcard);
CREATE MASKING POLICY msk_name randommasking ON LABEL(label_for_name) FILTER ON IP(local),
ROLES(dev);

label_for_creditcard and msk_name are the resource labels for masking, and
each label is allocated to two column objects. creditcardmasking and
randommasking are preset masking functions. msk_creditcard specifies that the
masking policy creditcardmasking will be applied when any user accesses
resources with label_for_creditcard, regardless of the access source. msk_name
specifies that the masking policy randommasking will be applied when local user
dev accesses resources with label_for_name. If FILTER is not specified, the setting
takes effect for all users. Otherwise, the setting takes effect only for specified
users.

The following table shows the preset masking functions:

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 57

Masking
Function

Example

creditcardma
sking

'4880-9898-4545-2525' will be anonymized as 'xxxx-xxxx-
xxxx-2525'. This function anonymizes digits except the last four
digits.

basicemailm
asking

'abcd@gmail.com' will be anonymized as 'xxxx@gmail.com'. This
function anonymizes text before the first @.

fullemailmas
king

'abcd@gmail.com' will be anonymized as 'xxxx@xxxxx.com'. This
function anonymizes text before the first dot (.) (except @).

alldigitsmask
ing

'alex123alex' will be anonymized as 'alex000alex'. This function
anonymizes only digits in the text.

shufflemaski
ng

'hello word' will be anonymized as 'hlwoeor dl'. This weak
masking function is implemented through character dislocation.
You are not advised to use this function to anonymize strings
with strong semantics.

randommask
ing

'hello word' will be anonymized as 'ad5f5ghdf5'. This function
randomly anonymizes text by character.

maskall '4880-9898-4545-2525' will be anonymized as
'xxxxxxxxxxxxxxxxxxx'.

The data types supported by each masking function are as follows:

Masking
Function

Supported Data Types

creditcardma
sking

BPCHAR, VARCHAR, NVARCHAR, TEXT (character data in credit
card format only)

basicemailm
asking

BPCHAR, VARCHAR, NVARCHAR, TEXT (character data in email
format only)

fullemailmas
king

BPCHAR, VARCHAR, NVARCHAR, TEXT (character data in email
format only)

alldigitsmask
ing

BPCHAR, VARCHAR, NVARCHAR, TEXT (character data
containing digits only)

shufflemaski
ng

BPCHAR, VARCHAR, NVARCHAR, TEXT (text data only)

randommask
ing

BPCHAR, VARCHAR, NVARCHAR, TEXT (text data only)

maskall BOOL, RELTIME, TIME, TIMETZ, INTERVAL, TIMESTAMP,
TIMESTAMPTZ, SMALLDATETIME, ABSTIME,
TEXT, BPCHAR, VARCHAR, NVARCHAR2, NAME, INT8, INT4,
INT2, INT1, NUMRIC, FLOAT4, FLOAT8, CASH

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 58

For unsupported data types, the maskall function is used for data masking by
default. The data of the BOOL type is masked as '0'. The RELTIME type is masked
as '1970'. The TIME, TIMETZ, and INTERVAL types are masked as
'00:00:00.0000+00'. The TIMESTAMP, TIMESTAMPTZ, SMALLDATETIME, and
ABSTIME types are masked as '1970-01-01 00:00:00.0000'. The TEXT, CHAR,
BPCHAR, VARCHAR, NVARCHAR2, and NAME type are masked as 'x'. The INT8,
INT4, INT2, INT1, NUMERIC, FLOAT4, FLOAT8 types are masked as '0'. If the data
type is not supported by maskall, the masking policy cannot be created. If implicit
conversion is involved in the masking column, the data type after implicit
conversion is used for masking. In addition, if the masking policy is applied to a
data column and takes effect, operations on the data in the column are performed
based on the masking result.

Dynamic data masking applies to scenarios closely related to actual services. It
provides users with proper masking query APIs and error handling logic based on
service requirements to prevent raw data from being obtained through credential
stuffing.

Enhancements

None.

Constraints
● The dynamic data masking policy must be created by a user with the

POLADMIN or SYSADMIN attribute, or by the initial user. Common users do
not have the permission to access the security policy system catalog and
system view.

● Dynamic data masking takes effect only on data tables for which masking
policies are configured. Audit logs are not within the effective scope of the
masking policies.

● In a masking policy, only one masking mode can be specified for a resource
label.

● Multiple masking policies cannot be used to anonymize the same resource
label, except when FILTER is used to specify user scenarios where the policies
take effect and there is no intersection between user scenarios of different
masking policies that contain the same resource label. In this case, you can
identify the policy that a resource label is anonymized by based on the user
scenario.

● It is recommended that APP in FILTER be set to applications in the same
trusted domain. Since a client may be forged, a security mechanism must be
formed on the client when APP is used to reduce misuse risks. Generally, you
are not advised to set APP. If it is set, pay attention to the risk of client
spoofing.

● For INSERT or MERGE INTO operations with the query clause, if the source
table contains anonymized columns, the inserted or updated result in the
preceding two operations is the anonymized value and cannot be restored.

● When the built-in security policy is enabled, the ALTER TABLE EXCHANGE
PARTITION statement fails to be executed if the source table is in the
anonymized column.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 59

● If a dynamic data masking policy is configured for a table, grant the trigger
permission of the table to other users with caution to prevent other users
from using the trigger to bypass the masking policy.

● A maximum of 98 dynamic data masking policies can be created.
● Only the preceding seven preset masking policies can be used.
● Only data with the resource labels containing the COLUMN attribute can be

anonymized.
● Only columns in base tables can be anonymized.
● Only the data queried using SELECT can be anonymized.
● Taking an IPv4 address as an example, the following formats are supported:

IP Address
Format

Example

Single IP
address

127.0.0.1

IP address
with mask

127.0.0.1|255.255.255.0

CIDR IP
address

127.0.0.1/24

IP address
segment

127.0.0.1-127.0.0.5

Dependencies
None.

4.10 Row-Level Access Control

Availability
This feature is available since openGauss 1.1.0.

Introduction
The row-level access control feature enables database access control to be
accurate to each row of data tables. When different users perform the same SQL
query operation, the read results may be different.

Benefits
When different users perform the same SQL query operation, the read results may
be different.

Description
You can create an RLS policy for a data table. The policy defines an expression
that takes effect only for specific database users and SQL operations. When a

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 60

database user accesses the data table, if a SQL statement meets the specified row-
level security policies of the data table, the expressions that meet the specified
condition will be combined by using AND or OR based on the attribute type
(PERMISSIVE | RESTRICTIVE) and applied to the execution plan in the query
optimization phase.

Row-level access control is used to control the visibility of row-level data in tables.
By predefining filters for data tables, the expressions that meet the specified
condition can be applied to execution plans in the query optimization phase,
which will affect the final execution result. Currently, the SQL statements that can
be affected include SELECT, UPDATE, and DELETE.

Enhancements

None.

Constraints
● Row-level access control policies can be applied only to SELECT, UPDATE, and

DELETE operations and cannot be applied to INSERT and MERGE operations.

● Row-level access control policies can be defined for row-store tables, row-
store partitioned tables, column-store tables, column-store partitioned tables,
replication tables, unlogged tables, and hash tables. Row-level access control
policies cannot be defined for HDFS tables, foreign tables, and temporary
tables.

● Row-level access control policies cannot be defined for views.

● A maximum of 100 row-level access control policies can be defined for a
table.

● Initial users and system administrators are not affected by row-level access
control policies.

● If a dynamic data masking policy is configured for a table that has the row-
level access control policies defined, grant the trigger permission of the table
to other users with caution to prevent other users from using the trigger to
bypass the masking policy.

Dependencies

None.

4.11 Password Strength Verification

Availability

This feature is available since openGauss 1.1.0.

Introduction

Verifies the password strength when users access the database.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 61

Benefits

Users cannot set passwords with low strength to enhance customer data security.

Description

You need to specify a password when initializing a database, creating a user, or
modifying a user. The password must meet the strength requirements. Otherwise,
the system prompts you to enter the password again. Password complexity
requirements:

● Minimum number of uppercase letters (A-Z) (password_min_uppercase)
● Minimum number of lowercase letters (a-z) (password_min_lowercase)
● Minimum number of digits (0-9) (password_min_digital)
● Minimum number of special characters (password_min_special)
● Minimum password length (password_min_length)
● Maximum password length (password_max_length)
● A password must contain at least three types of the characters (uppercase

letters, lowercase letters, digits, and special characters).
● A password is case insensitive and cannot be the username or the username

spelled backwards.
● A new password cannot be the current password and the current password

spelled backwards.
● It must be a strong password.

NO TE

Weak passwords are weak passwords that are easy to crack. The definition of weak
passwords may vary with users or user groups. Users can define their own weak
passwords.

If parameter password_policy is set to 1, the default password complexity rule is
used to check passwords.

Passwords in the weak password dictionary are stored in the gs_global_config
system catalog (the record whose name field is weak_password is the stored
weak password). When a user is created or modified, the password set by the user
is compared with the password stored in the weak password dictionary. If the
password is matched, a message is displayed, indicating that the password is weak
and the password fails to be set.

The weak password dictionary is empty by default. You can add or delete weak
passwords using the following syntax:

CREATE WEAK PASSWORD DICTIONARY WITH VALUES ('password1'), ('password2');
DROP WEAK PASSWORD DICTIONARY;

In the preceding statement, password1 and password2 are weak passwords
prepared by users. After the statement is executed successfully, the passwords are
saved to the weak password system catalog.

When a user attempts to run the CREATE WEAK PASSWORD DICTIONARY
statement to insert a weak password that already exists in the table, only one
weak password is retained in the table.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 62

The DROP WEAK PASSWORD DICTIONARY statement clears weak passwords in
the entire system catalog.

The gs_global_config system catalog does not have a unique index. You are not
advised to use the COPY FROM statement to copy the same data to the
gs_global_config system catalog.

To audit weak password operations, set the third bit of the value of the
audit_system_object parameter to 1.

Enhancements
In openGauss 1.1.0, the weak password dictionary function is implemented.

Constraints
● Initial users, system administrators, and security administrators can view, add,

and delete weak password dictionaries.
● Common users can view but cannot add or delete weak password dictionaries.

Dependencies
None.

4.12 Equality Query in a Fully-encrypted Database

Availability
This feature is available since openGauss 1.1.0.

Introduction
The encrypted database aims to protect privacy throughout the data lifecycle. In
this way, data is always in ciphertext during transmission, computing, and storage
regardless of the service scenario and environment. After the data owner encrypts
data on the client and sends the encrypted data to the server, no attacker can
obtain valuable information even if the attacker steals user data by exploiting
system vulnerabilities. In this way, data privacy is protected.

Benefits
The entire service data flow is in ciphertext during data processing, so the
following can be implemented by using a fully-encrypted database:

1. Protect data privacy and security throughout the lifecycle on the cloud.
Attackers cannot obtain valid information from the database server regardless
of the data status.

2. Help cloud service providers obtain third-party trust. Users, including service
administrators and O&M administrators in enterprise service scenarios and
application developers in consumer cloud services, can keep keys by
themselves so that users with high permissions cannot obtain valid data.

3. Enable cloud databases to better comply with personal privacy protection
laws and regulations with the help of the fully-encrypted database.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 63

Description

From the perspective of users, the encrypted equality query functions are divided
into three parts, which are implemented by the newly added KeyTool and the
enhanced openGauss gsql client.

First, this feature provides the client key management function. Users can use
KeyTool to generate, destroy, and update CMKs, and import and export keys. With
the import and export functions of KeyTool, CMKs can be transmitted between
different clients. In addition, the KeyTool implements key management on a single
client. By configuring management files, you can store and update keys.

In addition, this feature provides the key creation and encrypted table creation
functions. The SQL syntax CREATE CLINET MASTER KEY and CREATE COLUMN
ENCRYPTION KEY are added to record and manage CMK and CEK metadata in the
database. The CMK and CEK information is recorded in the new system catalog.
The CREATE TABLE syntax is extended to specify a column encryption key and
encryption algorithm for each sensitive information column in a table, facilitating
subsequent ciphertext data storage.

This feature supports the encrypted equality query function, which is the core of
the entire feature. Although users are unaware of the ciphertext query, the query
of sensitive data is restricted by the specifications of the current encrypted
equality query.

From the overall perspective, this feature is used to store and manage data based
on sensitive data protection requirements and implement query tasks based on
ciphertext data.

Enhancements

None.

Constraints
● Data is encrypted at the column level, and encryption policies cannot be

differentiated by row level.
● Except the RENAME operation, the ALTER TABLE syntax cannot be used to

change columns in an encrypted table (including the conversion between
encrypted and unencrypted columns). The ADD and DROP operations can be
used to add and delete encrypted columns, respectively.

● The CHECK(COLUMN IS NOT NULL) syntax can be used, but most check
constraint syntax cannot be set for encrypted columns.

● When support_extended_features is set to off, primary key and unique
cannot be used for encrypted columns. When support_extended_features is
set to on, only primary key and unique can be used for encrypted columns.

● Different data types cannot be implicitly converted.
● The set operation cannot be performed between ciphertexts of different data

types.
● The encrypted column cannot be of the array type.
● Range partitioning cannot be created for encrypted columns.
● Only the repeat and empty_blob() functions can be used to encrypt columns.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 64

● The current version supports only gsql and JDBC (deployed on a Linux OS)
clients. Other clients such as ODBC do not support encrypted equality query.

● When a JDBC client is used, this feature cannot be enabled together with the
load balancing or automatic primary node selection feature.

● Data can only be imported to the encrypted table by running copy from
stdin, \copy, or insert into values (...) on the client.

● Copying an encrypted table to a file is not supported.

● The system does not support encrypted queries, such as sorting, range query,
and fuzzy query, except equality query.

● The encrypted syntax of stored procedures for some functions is supported.
For details about the constraints, see "Encrypted Functions and Stored
Procedures" in the Developer Guide.

● Non-encrypted table data cannot be inserted into encrypted table data using
the INSERT INTO... SELECT... or MERGE INTO syntax.

● For a request in connection state, the CEK information change on the server
can be detected only after the cache update operation is triggered (for
example, the user is changed or the encrypted column fails to be decrypted)
and the connection is re-established.

● Encrypted equality query is not supported on columns encrypted using the
random encryption algorithm.

● An error is reported if the two attribute conditions used for comparison in the
encrypted equality query use different data encryption keys.

● Encrypted equality query is not supported in time series tables and foreign
tables. The ustore storage engine is not supported.

● If the database service configuration (such as the pg_settings system catalog,
permission, key, and encrypted column) is changed, you need to re-establish a
JDBC connection to make the configuration take effect.

● Multiple SQL statements cannot be executed at the same time. This constraint
does not apply to the scenario where the INSERT INTO statement is executed
in multiple batches.

● Encrypted equality query supports the following data types:

Category Type Description

Integer types tinyint/tinyint(n) Tiny integer, which is the same as int1.

smallint Small integer, which is the same as
int2.

int4 Common integer.

binary_integer Oracle compatibility type. Generally,
the value is an integer.

bigint/bigint(n) Big integer, which is the same as int8.

Numeric data
types

numeric(p,s) A number with the precision p.

number Oracle compatibility type, which is the
same as numeric(p,s).

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 65

Floating point
types

float4 Single-precision floating point.

float8 Double-precision floating point.

double precision Double-precision floating point.

Character data
types

char/char(n) Fixed-length character string. If the
length is insufficient, add spaces. The
default precision is 1.

varchar(n) Variable-length character string, where
n indicates the maximum number of
bytes.

text Text type.

varchar2(n) Oracle compatibility type, which is the
same as varchar(n).

clob Character large object.

Binary data
types

bytea Variable-length binary string.

blob Binary large object.

Dependencies
None.

4.13 Ledger Database Mechanism

Availability
This feature is available since openGauss 2.1.0.

Introduction
The ledger database feature includes adding the verification information to a
tamper-proof table specified by a user and recording the user's data operation
history. The consistency between the data and operation history is checked to
ensure that the user data cannot be maliciously tampered with. When a user
performs DML operations on a tamper-proof table, the system adds a small
amount of additional row-level verification information to the table and records
the SQL statements and data change history. The feature provides a verification
API for users to check whether the data in the tamper-proof table is consistent
with the operation information recorded by the system.

Benefits
The ledger database provides user data operation records, historical data change
records, and easy-to-use consistency verification API to help users check whether
sensitive information in the database is maliciously tampered with at any time,
effectively improving the tamper-proof capability of the database.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 66

Description

The ledger database uses the ledger schema to isolate common tables from
tamper-proof user tables. If a row-store table created in the ledger schema has
the tamper-proof attribute, it is a tamper-proof user table. When data is inserted
into a tamper-proof user table, the system automatically generates a small
amount of row-level verification information. When a user executes DML, the
system records user operations in the global blockchain table
(GS_GLOBAL_CHAIN) and records data changes in the historical table
corresponding to the user table. The data in operation records, data change
records, and the user table must be the same. The ledger database provides a
high-performance verification API for users to verify data consistency. If the
consistency verification fails, the data may be tampered with. In this case, contact
the audit administrator to trace the operation history.

Enhancements

None.

Constraints
● In tamper-proof schema, row-store tables are tamper-proofing, whereas

temporary tables, unlogged tables, column-store tables, and time series tables
are not.

● The structure of the tamper-proof user table cannot be modified. The tamper-
proof tables cannot be truncated. The tamper-proof user table cannot be
switched to a common schema. The non-tamper-proof table cannot be
switched to the tamper-proof schema.

● If the tamper-proof table is a partitioned table, operations such as exchange
partition, drop partition and truncate partition are not supported.

● Functions and triggers cannot be used to modify data in a tamper-proof user
table.

● When a tamper-proof user table is created, the column named hash cannot
exist.

● Common users can call the tampering verification API to verify only tables
that they have the permission to query.

● Only the audit administrator and initial user can query the global blockchain
table and tables in BLOCKCHAIN schema. Common users do not have the
permission to access and all users do not have the permission to modify the
tables.

● According to the naming rules of historical tables, if the name of the schema
or table to be created ends or starts with an underscore (_), the name of the
corresponding historical table may conflict with that of an existing table. In
this case, you need to rename the table.

Dependencies

None.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 67

4.14 Transparent Data Encryption

Availability

This feature is available since openGauss 2.1.0.

Introduction

Transparent data encryption (TDE) encrypts data when the database writes the
data to the storage medium and automatically decrypts the data when reading
the data from the storage medium. This prevents attackers from reading data in
the data file without database authentication, solving the static data leakage
problem. This function is almost transparent to the application layer. You can
determine whether to enable the transparent data encryption function as required.

Benefits

To prevent attackers from reading data files without authentication, you can use
the transparent data encryption function to encrypt data files in the database. This
ensures that users can read decrypted data only after starting and connecting to
the database properly.

Description

The three-layer key structure is used to implement the key management
mechanism, including the root key (RK), cluster master key (CMK), and data
encryption key (DEK). CMKs are encrypted and protected by RKs, and DEKs are
encrypted and protected by CMKs. DEKs are used to encrypt and decrypt user
data. Each table corresponds to a DEK.

Table-level encryption is supported. When creating a table, you can specify
whether to encrypt the table and the encryption algorithm to be used. The
encryption algorithm can be AES_128_CTR or SM4_CTR, which cannot be changed
once specified. If an encrypted table is created, the database automatically applies
for a DEK for the table and saves the encryption algorithm, key ciphertext, and
corresponding CMK ID in the reloptions column of the pg_class system catalog in
keyword=value format.

You can switch an encrypted table to a non-encrypted table or switch a non-
encrypted table to an encrypted table. If the encryption function is not enabled
when a table is created, the table cannot be switched to an encrypted table.

For encrypted tables, DEK rotation is supported. After the key rotation, the data
encrypted using the old key is decrypted using the old key, and the newly written
data is encrypted using the new key. The encryption algorithm is not changed
during key rotation.

Enhancements

None.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 68

Constraints
The current version interconnects with HUAWEI CLOUD KMS to support table-
level key storage and row-store table encryption. The specifications are as follows:

● Encryption of a row-store table stored as a heap is supported.
● Column-store encryption, materialized view encryption, and ustore storage

engine encryption are not supported.
● Indexes, sequences, Xlogs, MOTs, and system catalogs cannot be encrypted.
● You can specify an encryption algorithm when creating a table. Once

specified, the encryption algorithm cannot be changed. If enable_tde is set to
on but the encryption algorithm encrypt_algo is not specified when a table is
created, the AES-128-CTR encryption algorithm is used by default.

● If the encryption function is not enabled or the encryption algorithm is not
specified when a table is created, the table cannot be switched to an
encrypted table.

● For a table that has been assigned an encryption key, switching between the
encrypted and unencrypted states of the table does not change the key or
encryption algorithm.

● Data key rotation is supported only when the table encryption function is
enabled.

● Cross-region primary/standby synchronization of multiple copies in a single
cluster is not supported. Cross-region scaling of a single cluster is not
supported. Cross-region backup and restoration, cluster DR, and data
migration are not supported.

● In hybrid cloud scenarios, if the HUAWEI CLOUD KMS and management plane
functions are used, transparent data encryption is supported. Other KMS
services are not supported if their APIs are incompatible.

● The query performance of encrypted tables is lower than that of non-
encrypted tables. If high performance is required, exercise caution when
enabling the encryption function.

Dependencies
The key management service is provided by the external KMS. The current version
can interconnect with HUAWEI CLOUD KMS.

openGauss
Feature Description 4 Database Security

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 69

5 Enterprise-Level Features

5.1 Support for Functions and Stored Procedures

5.2 SQL Hints

5.3 Full-Text Indexing

5.4 Copy Interface for Error Tolerance

5.5 Partitioning

5.6 Support for Advanced Analysis Functions

5.7 Materialized View

5.8 HyperLogLog

5.9 Creating an Index Online

5.10 Autonomous Transaction

5.11 Global Temporary Table

5.12 Pseudocolumn ROWNUM

5.13 Stored Procedure Debugging

5.14 JDBC Client Load Balancing and Read/Write Isolation

5.15 In-place Update Storage Engine

5.16 Publication-Subscription

5.17 Foreign Key Lock Enhancement

5.18 Data Compression in OLTP Scenarios

5.1 Support for Functions and Stored Procedures

Availability
This feature is available since openGauss 1.1.0.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 70

Introduction

Functions and stored procedures are important database objects. They encapsulate
SQL statement sets used for certain functions so that the statements can be easily
invoked.

Benefits
1. Allows customers to modularize program design and encapsulate SQL

statement sets, easy to invoke.

2. Caches the compilation results of stored procedures to accelerate SQL
statement set execution.

3. Allows system administrators to restrict the permission for executing a specific
stored procedure and controls access to the corresponding type of data. This
prevents access from unauthorized users and ensures data security.

Description

openGauss supports functions and stored procedures compliant with the SQL
standard. The stored procedures are compatible with certain mainstream stored
procedure syntax, improving their usability.

Enhancements

None.

Constraints

None.

Dependencies

None.

5.2 SQL Hints

Availability

This feature is available since openGauss 1.1.0.

Introduction

SQL hints can be used to override execution plans.

Benefits

Improves SQL query performance.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 71

Description
In plan hints, you can specify a join order; join, stream, and scan operations, the
number of rows in a result, and redistribution skew information to tune an
execution plan, improving query performance.

Enhancements
None.

Constraints
None.

Dependencies
None.

5.3 Full-Text Indexing

Availability
This feature is available since openGauss 1.1.0.

Introduction
openGauss full-text indexing allows documents to be preprocessed and facilitates
subsequent search.

Benefits
openGauss full-text indexing provides the capability to identify natural-language
documents that satisfy a query and sort them by relevance.

Description
The preprocessing process of creating a full-text index includes:

● Parsing documents into tokens
It is useful to identify various classes of tokens, for example, numbers, words,
compound words, and email addresses, so that they can be processed
differently. In principle, token classes depend on the specific application, but
for most purposes it is adequate to use a predefined set of classes.

● Converting tokens into lexemes
A lexeme is a string, just like a token, but it has been normalized so that
different forms of the same word are made alike. For example, normalization
almost always includes folding upper-case letters to lower-case, and often
involves removal of suffixes (such as s or es in English). This allows searches
to find variant forms of the same word, without entering all the possible
variants. Also, this step typically eliminates stop words, which are so common
and usually useless for searching. (In short, tokens are raw fragments of the

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 72

document text, while lexemes are words that are believed useful for indexing
and searching.) openGauss uses dictionaries to perform this step and provides
various standard dictionaries.

● Storing preprocessed documents optimized for searching
For example, each document can be represented as a sorted array of
normalized lexemes. Along with the lexemes, it is often desirable to store
positional information for proximity ranking. Therefore, a document that
contains a more "dense" area of query words is assigned with a higher rank
than the one with scattered query words. Dictionaries allow fine-grained
control over how tokens are normalized. With appropriate dictionaries, you
can define stop words that should not be indexed.

Enhancements
None.

Constraints
The current limitations of openGauss's text search features are:

● The length of each lexeme must be less than 2 KB.
● The length of a tsvector (lexemes + positions) must be less than 1 MB.
● Position values in tsvector must be greater than 0 and less than or equal to

16383.
● No more than 256 positions per lexeme. Excessive positions, if any, will be

discarded.

Dependencies
None.

5.4 Copy Interface for Error Tolerance

Availability
This feature is available since openGauss 1.0.0.

Introduction
Certain errors that occur during the copy process are imported to a specified error
table without interrupting the process.

Benefits
Refine the copy function and improve the tolerance and robustness to common
errors such as invalid formats.

Description
openGauss provides the encapsulated copy error tables for creating functions and
allows users to specify error tolerance options when using the Copy From

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 73

statement. In this way, errors related to parsing, data format, and character set
during the execution of the Copy From statement are recorded in the error table
instead of being reported and interrupted. Even if a small amount of data in the
target file of Copy From is incorrect, the data can be imported to the database.
You can locate and rectify the fault in the error table later.

Enhancements
None

Constraints
For details, see "Importing Data > Running the COPY FROM STDIN Statement to
Import Data > Handling Import Errors" in the Developer Guide.

Dependencies
None

5.5 Partitioning

Availability
This feature is available since openGauss 1.1.0.

Introduction
Data is partitioned horizontally on a node using a specified policy. This operation
splits a table into multiple partitions that are not overlapped.

Benefits
In common scenarios, a partitioned table has the following advantages over a
common table:

● High query performance: You can specify partitions when querying partitioned
tables, improving query efficiency.

● High availability: If a certain partition in a partitioned table is faulty, data in
the other partitions is still available.

● Balanced I/O: Partitions can be mapped to different disks to balance I/O and
improve the overall system performance.

Description
Currently, the openGauss database supports range partitioned tables, list
partitioned tables, hash partitioned tables, interval partitioned tables, and level-2
partitioned tables.

● In a range partitioned table, data within a certain range is mapped to each
partition. The range is determined by the partition key specified when the
partitioned table is created. This partitioning mode is most commonly used.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 74

With the range partitioning function, the database divides a record, which is
to be inserted into a table, into multiple ranges using one or multiple columns
and creates a partition for each range to store data. Partition ranges do no
overlap.

● In a list partitioned table, data is mapped to each partition based on the key
values contained in each partition. The key values contained in a partition are
specified when the partition is created.
The list partitioning function divides the key values in the records to be
inserted into a table into multiple lists (the lists do not overlap in different
partitions) based on a column of the table, and then creates a partition for
each list to store the corresponding data.

● In a hash partitioned table, data is mapped to each partition using the hash
algorithm, and each partition stores records with the same hash value.
The hash partitioning function uses the internal hash algorithm to divide
records to be inserted into a table into partitions based on a column of the
table.

● Interval partitioning is a special type of range partitioning. Compared with
range partitioning, interval partitioning defines the interval value. When no
matching partition can be found for an inserted record, a partition can be
automatically created based on the interval value.

● A level-2 partitioned table is based on level-1 partition. Its partitioning
scheme is a combination of two level-1 partitioning schemes. Currently, the
level-2 partitioned table supports nine partitioning policies combining range
partitioning, list partitioning, and hash partitioning.

If you specify the PARTITION parameter when running the CREATE TABLE
statement, data in the table will be partitioned. Users can modify partition keys as
needed during table creation to make the query result stored in the same or least
partitions (called partition pruning), obtaining consecutive I/O to improve the
query performance.

In actual services, time is often used to filter query objects. Therefore, you can
select the time column as the partition key. The key value range can be adjusted
based on the total data volume and the data volume queried at a time.

Enhancements
Range partitioned tables can be combined.

Constraints
None.

Dependencies
None.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 75

5.6 Support for Advanced Analysis Functions

Availability
This feature is available since openGauss 1.1.0.

Introduction
None.

Benefits
Window functions are provided for advanced data analysis and processing. The
window function groups the data in a table in advance. Each row belongs to a
specific group. Then, a series of association analysis calculations are performed on
the group. In this way, some attributes of each tuple in the set and association
information with other tuples can be mined.

Description
The following uses an example to describe the window analysis function: Compare
the salary of each person in a department with the average salary of the
department.

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;
depname | empno | salary | avg
-----------+-------+--------+-----------------------
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 | 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 | 4800 | 4866.6666666666666667
sales | 1 | 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The analysis function avg(salary) OVER (PARTITION BY depname) easily
calculates each employee's salary and the average salary of the department.

Currently, the system supports the following analysis functions: row_number(),
rank(), dense_rank(), percent_rank(), cume_dist(), ntile(), lag(), lead(),
first_value(), last_value(), and nth_value(). For details about functions and
statements, see "SQL Reference > Functions and Operators > Window Functions"
in the Developer Guide.

Enhancements
None.

Constraints
None.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 76

Dependencies
None.

5.7 Materialized View

Availability
This feature is available since openGauss 1.1.0.

Introduction
A materialized view is a special physical table, which is relative to a common view.
A common view is a virtual table and has many application limitations. Any query
on a view is actually converted into a query on an SQL statement, and
performance is not actually improved. The materialized view actually stores the
results of the statements executed by the SQL statement, and is used to cache the
results.

Benefits
The materialized view function is used to improve query efficiency.

Description
Full materialized views and incremental materialized views are supported. Full
materialized views can only be updated in full mode. Incremental materialized
views can be updated asynchronously. You can run statements to update new data
to materialized views.

Enhancements
None.

Constraints
Only simple filter queries and UNION ALL statements are supported for base
tables.

Dependencies
None.

5.8 HyperLogLog

Availability
This feature is available since openGauss 1.1.0.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 77

Introduction
HyperLoglog (HLL) is used to count the number of distinct values.

Benefits
Improves AP/TP query performance.

Description
HLL is an approximation algorithm for efficiently counting the number of distinct
values in a dataset. It features faster computing and lower space usage. You only
need to store HLL data structures instead of datasets. When new data is added to
a dataset, make hash calculation on the data and insert the result to an HLL.
Then, you can obtain the final result based on the HLL.

HLL has advantages over others in the computing speed and storage space
requirement. In terms of time complexity, the Sort algorithm needs to sort at least
O(n log n) time. Although the Hash algorithm can obtain the result by scanning
the entire table O(n) time, the storage space is as follows: Both the Sort and Hash
algorithms need to store the original data before collecting statistics, which
consumes a large amount of storage space. For the HLL, the original data does
not need to be stored, and only the HLL data structure needs to be maintained.
Therefore, the occupied space is always at the 1280-byte constant level.

Enhancements
None.

Constraints
None.

Dependencies
None.

5.9 Creating an Index Online

Availability
This feature is available since openGauss 1.1.0.

Introduction
Uses the CREATE INDEX CONCURRENTLY syntax to create indexes online without
blocking DML.

Benefits
When creating an index, you can specify the CONCURRENTLY keyword to ensure
that the DML and online services are not blocked during the index creation.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 78

Description

A normal CREATE INDEX acquires exclusive lock on the table on which the index
depends, blocking other accesses until the index drop can be completed. If the
CONCURRENTLY keyword is specified, the ShareUpdateExclusiveLock lock is added
to the table so that DML is not blocked during the creation.

This keyword is specified when an index is created online. The entire table needs
to be scanned twice and built. When the table is scanned for the first time, an
index is created and the read and write operations are not blocked. During the
second scan, changes that have occurred since the first scan are merged and
updated. The table needs to be scanned and built twice, and all existing
transactions that may modify the table must be completed. This means that the
creation of the index takes a longer time than normal. In addition, the CPU and
I/O consumption also affects other services.

Enhancements

None

Constraints
● Only one index name can be specified when an index is created online.
● The CREATE INDEX statement can be run within a transaction, but CREATE

INDEX CONCURRENTLY cannot.
● Column-store tables, partitioned tables, and temporary tables do not support

CREATE INDEX CONCURRENTLY.

Dependencies

None

5.10 Autonomous Transaction

Availability

This feature is available since openGauss 1.1.0.

Introduction

An autonomous transaction is a type of transaction in which the commit of a sub-
transaction is not affected by the commit or rollback of the main transaction.

Benefits

This feature meets diversified application scenarios.

Description

In an autonomous transaction, a specified type of SQL statements are executed in
an independent transaction context during the execution of the main transaction.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 79

The commit and rollback operations of an autonomous transaction are not
affected by the commit and rollback operations of the main transaction.

User-defined functions and stored procedures support autonomous transactions.

A typical application scenario is as follows: A table is used to record the operation
information during the main transaction execution. When the main transaction
fails to be rolled back, the operation information recorded in the table cannot be
rolled back.

Enhancements
None.

Constraints
● A trigger function does not support autonomous transactions.
● In the autonomous transaction block of a function or stored procedure, static

SQL statements do not support variable transfer.
● Autonomous transactions do not support nesting.
● A function containing an autonomous transaction does not support the return

value of parameter transfer.
● A stored procedure or function that contains an autonomous transaction does

not support exception handling.

Dependencies
None.

5.11 Global Temporary Table

Availability
This feature is available since openGauss 1.1.0.

Introduction
A temporary table does not guarantee persistency. Its life cycle is usually bound to
a session or transaction, which can be used to store temporary data during
processing and accelerate query.

Benefits
This feature improves the expression capability and usability of temporary tables.

Description
The metadata of the global temporary table is visible to all sessions. After the
sessions end, the metadata still exists. The user data, indexes, and statistics of a
session are isolated from those of another session. Each session can only view and
modify the data submitted by itself.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 80

Global temporary tables have two schemas: ON COMMIT PRESERVE ROWS and
ON COMMIT PRESERVE ROWS. In session-based ON COMMIT PRESERVE ROWS
schema, user data is automatically cleared when a session ends. In transaction-
based ON COMMIT DELETE ROWS schema, user data is automatically cleared
when the commit or rollback operation is performed. If the ON COMMIT option is
not specified during table creation, the session level is used by default. Different
from local temporary tables, you can specify a schema that does not start with
pg_temp_ when creating a global temporary table.

Enhancements
The processing of the global temporary table is added based on the local
temporary table.

Constraints
● Parallel scanning is not supported.
● Temp tablespace is not supported.
● Partitions are not supported.
● GIST indexes are not supported.
● The user-defined statistics pg_statistic_ext is not supported.
● ON COMMIT DROP is not supported.
● Hash bucket cluster storage is not supported.
● Row store is not supported.

Dependencies
None

5.12 Pseudocolumn ROWNUM

Availability
This feature is available since openGauss 1.0.1.

Introduction
ROWNUM is a sequence number generated for each record in the query result.
The sequence number starts from 1 and is unique.

Benefits
● This feature is compatible with Oracle features, facilitating database

migration.
● Similar to the LIMIT feature, this feature can filter out the first n records in

the result set.

Description
ROWNUM (pseudocolumn), which is used to label the records that meet
conditions in the SQL query in sequence. In the query result, the value of

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 81

ROWNUM in the first line is 1, the value of ROWNUM in the second line is 2, and
so on. The value of ROWNUM in the nth line is n. This feature is used to filter the
first n rows of data in the query result set, which is similar to the LIMIT function in
openGauss.

Enhancements
During internal execution, the optimizer rewrites ROWNUM into LIMIT to
accelerate the execution speed.

Constraints
● Do not use the pseudocolumn ROWNUM as an alias to avoid ambiguity in

SQL statements.
● Do not use ROWNUM when creating an index. Bad example: create index

index_name on table(rownum);
● Do not use ROWNUM as the default value when creating a table. Bad

example: create table table_name(id int default rownum);
● Do not use ROWNUM as an alias in the WHERE clause. Bad example: select

rownum rn from table where rn < 5;
● Do not use ROWNUM when inserting data. Bad example: insert into table

values (rownum,'blue')
● Do not use ROWNUM in a table-less query. Bad example: select * from

(values(rownum,1)), x(a,b);
● If the HAVING clause contains ROWNUM (and is not in the aggregate

function), the GROUP BY clause must contain ROWNUM (and is not in the
aggregate function).

Dependencies
None.

5.13 Stored Procedure Debugging

Availability
This feature was introduced in openGauss 1.0.0. After the third-party library code
directory structure was adjusted, this feature was temporarily deleted and is now
available since openGauss 1.1.0.

Introduction
This feature provides a group of APIs for debugging stored procedures, such as
breakpoint debugging and variable printing.

Benefits
This feature improves user experience in developing stored procedures based on
openGauss.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 82

Description

Stored procedures are important database objects. They encapsulate SQL
statement sets used for certain functions so that the statements can be easily
invoked. A stored procedure usually contains many SQL statements and procedural
execution structures, depending on the service scale. However, writing a large
stored procedure is usually accompanied by logic bugs. It is difficult or even
impossible to find the bugs by only executing the stored procedure. Therefore, a
debugging tool is required.

The stored procedure debugging tool provides a group of debugging APIs to
enable the stored procedure to be executed step by step. During the execution,
you can set breakpoints and print variables so that SQL developers can detect and
correct errors in time and develop functions more efficiently and with high quality.

Enhancements

None.

Constraints

None.

Dependencies

None.

5.14 JDBC Client Load Balancing and Read/Write
Isolation

Availability

This feature is available since openGauss 2.1.0.

Introduction

The JDBC client provides load balancing and read/write isolation capabilities.

Benefits

Load balancing and read/write isolation can be configured on the JDBC client.

Description

The IP addresses and port numbers of multiple nodes on the client are configured
to adapt to HA switchover between multiple AZs and remote DR switchover. The
connection-level read/write isolation configuration is supported. Preferentially
connecting to read-only nodes is supported. Multiple read-only nodes are evenly
distributed.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 83

Enhancements

None.

Constraints

None.

Dependencies

None.

5.15 In-place Update Storage Engine

Availability

This feature is available since openGauss 2.1.0.

Introduction

The in-place update storage engine is a new storage mode added to openGauss.
The row storage engine used by the earlier versions of openGauss is in append
update mode. The append update has good performance in addition, deletion, and
HOT (Heap Only Tuple) update (that is, update on the same page) in the service.
However, in a non-HOT UPDATE scenario across data pages, garbage collection is
not efficient. The Ustore storage engine can solve this problem.

Benefits

The in-place update storage engine can effectively reduce storage space
occupation after tuples are updated for multiple times.

Description

The in-place update storage engine solves the problems of space expansion and
large tuples of the Append update storage engine. The design of efficient rollback
segments is the basis of the in-place update storage engine.

Enhancements

None.

Constraints

None.

Dependencies

None.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 84

5.16 Publication-Subscription

Availability
This feature is available since openGauss 3.0.0.

Introduction
Publication-subscription is implemented based on logical replication, with one or
more subscribers subscribing to one or more publications on a publisher node. The
subscriber pulls data from the publications they subscribe to. Data across database
clusters can be synchronized in real time.

Benefits
The typical application scenarios of publication-subscription are as follows:

● Sending incremental changes in a database or a subset of a database to
subscribers as they occur

● Firing triggers when changes reach subscribers
● Consolidating multiple databases into a single one (for example, for analysis

purposes)

Description
Changes on the publisher are sent to the subscriber as they occur in real time. The
subscriber applies the published data in the same order as the publisher, so that
transactional consistency is guaranteed for publications within a single
subscription. This method of data replication is sometimes called transactional
replication.

The subscriber database behaves in the same way as any other openGauss
instance and can be used as a publisher for other databases by defining its own
publications. When the subscriber is treated as read-only by an application, there
will be no conflicts in a single subscription. On the other side, conflicts may occur
if other write operations are performed by the application or by other subscribers
in the same set of tables.

Enhancements
None.

Constraints
Publication-subscription is implemented based on logical replication and inherits
all restrictions of logical replication. In addition, publication-subscription has the
following additional restrictions or missing functions.

● Database schemas and DDL commands are not replicated. Initial schemas can
be manually copied by using pg_dump --schema-only. Subsequent schema
changes need to be manually synchronized.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 85

● Sequence data is not replicated. The data in serial or identifier columns
backed by the sequence in the background will be replicated as part of the
table, but the sequence itself will still display the start value on the subscriber.
If the subscriber is used as a read-only database, this is usually not a problem.
However, if some kind of switchover or failover to the subscriber database is
intended, the sequence needs to be updated to the latest value, either by
copying the current data from the publisher (perhaps using pg_dump) or by
determining a sufficiently large value from the tables themselves.

● Only tables, including partitioned tables, can be replicated. Attempts to
replicate other types of relations, such as views, materialized views, or foreign
tables, will result in errors.

● Multiple subscriptions in the same database cannot subscribe to the same
publication (that is, the same published table). Otherwise, duplicate data or
primary key conflicts may occur.

● If a published table contains data types that do not support B-tree or hash
indexes (such as the geography types), the table must have a primary key so
that UPDATE and DELETE operations can be successfully replicated to the
subscription side. Otherwise, the replication will fail, and the message "FATAL:
could not identify an equality operator for type xx" will be displayed on the
subscription side.

Dependencies
Publication-subscription depends on the logical replication function.

5.17 Foreign Key Lock Enhancement

Availability
This feature is available since openGauss 3.0.0.

Introduction
Two types of row locks are added, which are extended from share and update
locks to key share, share, no key update, and update locks. A non-primary key
update obtains a no key update lock, and a row lock obtained by a foreign key
trigger is a key share lock. The two types of locks do not conflict with each other,
thereby improving concurrency of foreign key locks.

Benefits
Most table update operations are non-primary key updates. This feature
effectively reduces the blocking of concurrent updates in scenarios with foreign
key constraints and improves efficiency.

Description
When the non-primary key column of a tuple in the parent table is updated, the
no key update lock is obtained. When the corresponding tuple in the child table is
updated or inserted, the foreign key trigger is triggered to obtain the key share
lock of the tuple in the parent table. They do not block each other.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 86

Because row locks that do not conflict with each other are added, multiple
transactions are not composed of only share locks. Instead, there are multiple
combinations of different row locks according to the following conflict table.

Lock Mode key share share no key update update

key share X

share X X

no key update X X X

update X X X X

Enhancements
None.

Constraints
● The new row lock does not support the Ustore table.

Dependencies
None

5.18 Data Compression in OLTP Scenarios

Availability
This feature is available since openGauss 3.0.0.

Introduction
The feature supports row-store data compression in OLTP scenarios, provides a
general compression algorithm, and implements transparent compression of data
pages and maintenance of page storage locations to achieve high compression
and high performance. Disk persistence is implemented using two types of files:
compressed address file (with the file name extension .pca) and compressed data
file (with the file name extension .pcd).

Benefits
Typically, it is applicable where the database disk space needs to be reduced.

Description
Data compression in OLTP scenarios can reduce the disk storage space of row
tables and index data and improve performance in I/O-intensive database
systems.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 87

Constraints
- Only row-store tables and BTree indexes are supported. The feature cannot be
used on Ustore and segment-page storage engines.

- Compressed table index files are accessed using mmap. max_map_count must
be set properly based on the number of compressed table files.

openGauss
Feature Description 5 Enterprise-Level Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 88

6 Application Development Interfaces

6.1 Standard SQL

6.2 Standard Development Interfaces

6.3 PostgreSQL API Compatibility

6.4 PL/Java

6.1 Standard SQL

Availability

This feature is available since openGauss 1.0.0.

Introduction

SQL is a standard computer language used to control the access to databases and
manage data in databases. SQL standards are classified into core features and
optional features. Most databases do not fully support SQL standards.

openGauss supports most of the core features of SQL:2011 and some optional
features, providing a unified SQL interface for users.

Benefits

All database vendors can use a unified SQL interface, reducing the costs of
learning languages and migrating applications.

Description

For details, see "SQL Reference > SQL Syntax" in the Developer Guide.

Enhancements

None

openGauss
Feature Description 6 Application Development Interfaces

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 89

Constraints

None

Dependencies

None

6.2 Standard Development Interfaces

Availability

This feature is available since openGauss 1.0.0.

Introduction

Standard ODBC 3.5 and JDBC 4.0 APIs are supported.

Benefits

Standard ODBC and JDBC interfaces are provided to ensure quick migration of
user services to openGauss.

Description

Currently, the standard ODBC 3.5 and JDBC 4.0 APIs are supported. The ODBC
interface supports SUSE Linux, Windows 32-bit, and Windows 64-bit platforms.
The JDBC API supports all platforms.

Enhancements

The function of connecting JDBC to a third-party log framework is added. JDBC
can interconnect with a third-party log framework to meet users' log management
and control requirements.

Constraints

None

Dependencies

None

6.3 PostgreSQL API Compatibility

Availability

This feature is available since openGauss 1.0.0.

openGauss
Feature Description 6 Application Development Interfaces

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 90

Introduction

Compatible with PostgreSQL clients and standard APIs.

Benefits

Compatible with the PostgreSQL clients and standard APIs, and can be seamlessly
interconnected with PostgreSQL ecosystem tools.

Description

Compatible with PostgreSQL clients and standard APIs.

Enhancements

None

Constraints

None

Dependencies

None

6.4 PL/Java

Availability

This feature is available since openGauss 1.0.0.

Introduction

The Java user-defined field (UDF) is supported.

Benefits

A development environment is provided for multiple functions.

Description

With the openGauss PL/Java function, you can choose your favorite Java IDE to
write Java methods and install the JAR files containing these methods into
openGauss before invoking them. openGauss PL/Java is developed based on open-
source tada PL/Java 1.5.2. PL/Java uses Huawei JDK V100R001C00SPC190B003-
b09.

Enhancements

None

openGauss
Feature Description 6 Application Development Interfaces

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 91

Constraints
● Java UDFs can implement simple Java computing. However, do not

encapsulate services in Java UDFs.
● Do not connect to a database in any way (for example, JDBC) in Java

functions.
● Use Huawei JDK V100R001C00SPC190B003-b09 to compile Java methods and

JAR files.
● Currently, only data types listed in Table 6-1 are supported. Other data types,

such as user-defined data types and complex data types (for example, Java
array and its derived types) are not supported.

● Currently, UDAF and UDTF are not supported.

Table 6-1 PL/Java mapping for default data types

openGauss Java

BOOLEAN boolean

"char" byte

bytea byte[]

SMALLINT short

INTEGER int

BIGINT long

FLOAT4 float

FLOAT8 double

CHAR java.lang.String

VARCHAR java.lang.String

TEXT java.lang.String

name java.lang.String

DATE java.sql.Timestamp

TIME java.sql.Time (stored value treated
as local time)

TIMETZ java.sql.Time

TIMESTAMP java.sql.Timestamp

TIMESTAMPTZ java.sql.Timestamp

Dependencies
PL/Java depends on the Java Development Kit (JDK) environment. Currently, JDK is
included in openGauss and installation is not required. If you have installed the

openGauss
Feature Description 6 Application Development Interfaces

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 92

same or different versions of JDK, no conflict will occur. openGauss uses Huawei
JDK V100R001C00SPC190B003-b09 to run PL/Java.

openGauss
Feature Description 6 Application Development Interfaces

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 93

7 AI Capabilities

The history of artificial intelligence (AI) can be dated back to as early as the
1950s, even longer than the history of the database development. However, the AI
technology has not been applied on a large scale for a long time due to various
objective factors, and even experienced several obvious troughs. With the further
development of information technologies in recent years, factors that restrict the
AI development have been gradually weakened, and the AI, big data, and cloud
computing (ABC) technologies are born.

The combination of AI and databases has been a trending research topic in the
industry in recent years. openGauss has participated in the exploration of this
domain earlier and achieved phased achievements. An AI submodule DBMind is
provided for the database. Compared with other functions, it is more independent.
This module can be divided into AI4DB, DB4AI, and AI in DB.

● AI4DB uses AI technologies to optimize database execution performance as
well as achieve autonomy and O&M free. It includes self-tuning, self-
diagnosis, self-security, self-O&M, and self-healing.

● DB4AI streamlines the E2E process from databases to AI applications, drives
AI tasks through databases, and unifies the AI technology stack to achieve
out-of-the-box, high performance, and cost saving. For example, SQL-like
statements are used to implement functions such as recommendation system,
image retrieval, and time series forecast. The advantages of high parallelism
and column store of databases can be fully utilized to avoid the cost of data
and fragmented storage and avoid security risks caused by information
leakage.

● AI in DB modifies the database kernel to implement functions that cannot be
implemented in the original database architecture. For example, AI algorithms
are used to improve the database optimizer to implement more accurate cost
estimation.

The functions described in this section are stored in the bin/dbmind directory of
the database installation directory ($GAUSSHOME). The sub-functions are stored
in the components subdirectory of bin/dbmind. To invoke DBMind, you can run
the gs_dbmind command. In addition, the built-in AI functions (such as DB4AI) of
the database are presented in the form of SQL syntaxes and system functions.

7.1 AI4DB: Autonomous Database O&M

7.2 DB4AI: Database-driven AI

openGauss
Feature Description 7 AI Capabilities

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 94

7.3 AI in DB

7.1 AI4DB: Autonomous Database O&M

7.1.1 Database Metric Collection, Forecast, and Exception
Detection

Availability

This feature is available since openGauss 1.1.0.

Introduction

This feature serves as an AI tool integrated into openGauss and can be used to
collect and forecast database metrics, as well as monitor and diagnose exceptions.
It is a component in the DBMind suite. Currently, this feature is compatible with
the Prometheus platform to collect database system metrics. Prometheus
exporters are provided to collect and process database monitoring metrics. By
monitoring the time series data of metrics, you can forecast the future load trend
and diagnose problems.

Benefits
● This feature greatly simplifies the work of O&M personnel, releases a large

number of labor resources, and reduces costs for the company.
● You can use the metric collection, monitoring, and forecast functions to detect

problems in advance, preventing database exceptions from causing greater
loss.

Description

Prometheus is a popular open-source monitoring system in the industry. It is also
a time series database. The collector of Prometheus is called exporter, which is
used to collect metrics of monitored modules. To interconnect with the
Prometheus platform, DBMind provides two types of exporters: openGauss-
exporter for collecting database metrics and reprocessing-exporter for
reprocessing the collected metrics.

This feature supports forecast of collected metrics. You can specify key
performance indicators (KPIs) to be forecasted by modifying configuration files.
This helps you find metric trends and perform O&M operations in a timely
manner. For example, you can forecast the memory usage to detect memory
leakage and forecast the disk usage to expand the capacity at a proper time.

Enhancements

This feature is greatly improved in openGauss 3.0.0 and is compatible with the
Prometheus platform. Two exporters are used to connect to Prometheus.

openGauss
Feature Description 7 AI Capabilities

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 95

Constraints
● The database is normal, and the data directory has been written into

environment variables.
● The Python version must be 3.6 or later.
● The Prometheus monitoring platform is configured and the Prometheus

service is started so that monitoring data can be collected.

Dependencies

Prometheus

7.1.2 Root Cause Analysis for Slow SQL Statements

Availability

This feature is available since openGauss 3.0.0.

Introduction

Slow SQL statements have always been a pain point in data O&M. How to
effectively diagnose the root causes of slow SQL statements is a big challenge.
Based on the characteristics of openGauss and the slow SQL statement diagnosis
experience of DBAs on the live network, this tool supports more than 15 root
causes of slow SQL statements, outputs multiple root causes based on the
possibility, and provides specific solutions.

Benefits

This feature provides customers with fast and reliable slow SQL statement
discovery and root cause analysis functions, greatly simplifying the work of O&M
personnel.

Description

Based on the Prometheus data collection solution, data required for root cause
analysis for slow SQL statements is collected, including system resource
information (CPU usage, memory usage, and I/O), load information (QPS), large
process information (including external large processes and scheduled database
tasks), slow SQL statement text information, start time and end time of slow SQL
statement execution, slow SQL statement execution plan, temporary file
information, and so on. Then, this feature calculates the most matched root cause
of slow SQL statements based on the AI algorithm, and provides suggestions and
confidence.

Enhancements

None.

Constraints
● The database is normal, and the client can be connected properly.

openGauss
Feature Description 7 AI Capabilities

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 96

● An environment running Python 3.6 or later is available.
● The information about slow SQL statements is obtained from the workload

diagnosis report (WDR). In the database WDR, slow SQL statements are
marked. The GUC parameter track_stmt_stat_level is enabled by default.
Otherwise, you need to manually enable it. Generally, the
track_stmt_stat_level is set to 'off, L0'. Higher levels will affect the
performance. Data collection is implemented by the Prometheus solution.
Therefore, you need to configure the Prometheus data collection platform.
This feature focuses on algorithms and obtains metric sequence information
from Prometheus.

Dependencies

None.

7.1.3 Index Recommendation

Availability

This feature is available since openGauss 1.1.0.

Introduction

This feature serves as an intelligent database index recommendation tool that
covers multiple task levels and application scenarios. It provides the single-query
index recommendation function, virtual index function, and workload-level index
recommendation function to provide reliable index recommendations for users.

Benefits

This feature provides the quick and reliable index recommendation function,
greatly simplifying the work of O&M personnel.

Description

The single-query index recommendation function allows users to directly perform
operations in the database. This feature generates recommended indexes for a
single query statement entered by users based on the semantic information of the
query statement and the statistics of the database. The virtual index function
allows users to directly perform operations in the database. This feature simulates
the creation of a real index to avoid the time and space overhead required for
creating a real index. Based on the virtual index, users can evaluate the impact of
the index on the specified query statement by using the optimizer. The workload-
level index recommendation can be used by running scripts outside the database.
This feature uses the workload of multiple DML statements as the input to
generate a batch of indexes that can optimize the overall workload execution
performance.

Enhancements

None.

openGauss
Feature Description 7 AI Capabilities

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 97

Constraints
The database is normal, and the client can be connected properly.

The gsql tool has been installed by the current user, and the tool path has been
added to the PATH environment variable.

An environment running Python 3.6 or later is available.

Dependencies
None.

7.1.4 Parameter Tuning and Diagnosis

Availability
This feature is available since openGauss 1.0.0.

Introduction
This feature servers as a parameter tuning tool integrated into databases. It uses
AI technologies such as deep reinforcement learning and global search algorithms
to obtain the optimal database parameter settings without manual intervention. It
is not forcibly deployed with the database environment. It can be independently
deployed and run without the database installation environment.

Benefits
This tool can quickly provide the parameter adjustment configuration of the
current load in any scenario, reducing database administrator's manual
intervention, improving the O&M effect, and meeting customer expectations.

Description
The tuning program can run in any of the following modes:

● recommend: Log in to the database using the specified username, obtain the
feature information about the running workload, and generate a parameter
recommendation report based on the feature information. Report improper
parameter settings and potential risks in the current database. Output the
currently running workload behavior and characteristics. Output the
recommended parameter settings. In this mode, the database does not need
to be restarted. In other modes, the database may need to be restarted
repeatedly.

● train: Modify parameters and execute the benchmark based on the
benchmark information provided by users. The reinforcement learning model
is trained through repeated iteration so that you can load the model in tune
mode for optimization.

● tune: Use an optimization algorithm to tune database parameters. Currently,
two types of algorithms are supported: deep reinforcement learning and
global search algorithm (global optimization algorithm). The deep
reinforcement learning mode requires train mode to generate the optimized

openGauss
Feature Description 7 AI Capabilities

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 98

model after training. However, the global search algorithm does not need to
be trained in advance and can be directly used for search and optimization.

Enhancements
None.

Constraints
● The database is normal, the client can be properly connected, and data can be

imported to the database. As a result, the optimization program can perform
the benchmark test for optimization effect.

● To use this tool, you need to specify the user who logs in to the database. The
user who logs in to the database must have sufficient permissions to obtain
sufficient database status information.

● If you log in to the database host as a Linux user, add $GAUSSHOME/bin to
the PATH environment variable so that you can directly run database O&M
tools, such as gsql, gs_guc, and gs_ctl.

● The recommended Python version is Python 3.6 or later. The required
dependency has been installed in the operating environment, and the
optimization program can be started properly. You can install a Python 3.6+
environment independently without setting it as a global environment
variable. You are not advised to install the tool as the root user. If you install
the tool as the root user and run the tool as another user, ensure that you
have the read permission on the configuration file.

● This tool can run in three modes. In tune and train modes, you need to
configure the benchmark running environment and import data. This tool will
iteratively run the benchmark to check whether the performance is improved
after the parameters are modified.

● In recommend mode, you are advised to run the command when the
database is executing the workload to obtain more accurate real-time
workload information.

● By default, this tool provides benchmark running script samples of TPC-C,
TPC-H, TPC-DS, and sysbench. If you use the benchmarks to perform pressure
tests on the database system, you can modify or configure the preceding
configuration files. To adapt to your own service scenarios, you need to
compile the script file that drives your customized benchmark based on the
template.py file in the benchmark directory.

Dependencies
None.

7.1.5 Slow SQL Statement Discovery

Availability
This feature is available since openGauss 1.1.0.

Introduction
This feature servers as an SQL statement execution time forecast tool. It forecasts
the execution time of SQL statements based on the statement logic similarity and

openGauss
Feature Description 7 AI Capabilities

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 99

historical execution records without obtaining the SQL statement execution plan
using a template.

Benefits
● This feature does not require users to provide SQL execution plans. Therefore,

the database performance is not affected.
● Different from other algorithms in the industry that are limited to OLAP or

OLTP, this feature is more widely used.

Description
The SQLdiag focuses on the historical SQL statements of the database,
summarizes the execution performance of the historical SQL statements, and then
uses the historical SQL statements to infer unknown services. The execution
duration of SQL statements in the database does not differ greatly in a short
period of time. SQLdiag can detect the statement result set similar to the executed
SQL statements from historical data and predict the execution duration of SQL
statements based on the SQL vectorization technology and template-based
method.

Enhancements
None.

Constraints
● The historical logs and the format of the workload to be predicted meet the

requirements. You can use the GUC parameter of the database to enable the
collection or use the monitoring tool to collect logs.

● To ensure the prediction accuracy, the historical statement logs provided by
users should be as comprehensive and representative as possible.

● The Python environment has been configured as required.

Dependencies
None.

7.2 DB4AI: Database-driven AI

Availability
This feature is available since openGauss 2.1.0.

Introduction
DB4AI uses database capabilities to drive AI tasks and implement data storage
and technology stack isomorphism. By integrating AI algorithms into the database,
openGauss supports the native AI computing engine, model management, AI
operators, and native AI execution plan, providing users with inclusive AI
technologies. Different from the traditional AI modeling process, DB4AI one-stop

openGauss
Feature Description 7 AI Capabilities

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 100

modeling eliminates repeated data flowing among different platforms, simplifies
the development process, and plans the optimal execution path through the
database, so that developers can focus on the tuning of specific services and
models. It outcompetes similar products in ease-of-use and performance.

Benefits
● With this feature, you do not need to manually compile AI model code.

Instead, you can use out-of-the-box SQL statements to train and forecast
machine learning models, reducing the learning and usage costs.

● Extra overhead that is caused by fragmented data storage and repeated data
migration can be avoided.

● A higher execution efficiency can be achieved. With this feature, the AI model
training efficiency is high. Compared with manual model training, the
performance is improved by several times.

● Stricter security protection prevents data leakage during AI model training.

Description
openGauss supports the native DB4AI capability. By introducing native AI
operators, openGauss simplifies the operation process and fully utilizes the
optimization and execution capabilities of the database optimizer and executor to
obtain the high-performance model training capability in the database. With a
simpler model training and forecast process and higher performance, developers
can focus on model tuning and data analysis in a shorter period of time, avoiding
fragmented technology stacks and redundant code implementation.

Enhancements
More algorithms are supported in openGauss 3.0.0.

Constraints
● The database is running properly.

Dependencies
None.

7.3 AI in DB

7.3.1 Predictor: AI Query Time Forecasting

Availability
This feature is available since openGauss 1.0.0.

Introduction
Predictor is a query time forecasting tool that leverages machine learning and has
online learning capability. Predictor can predict the execution time of a plan in the

openGauss
Feature Description 7 AI Capabilities

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 101

database kernel by continuously learning the historical execution information
collected in the database.

Benefits

This feature predicts the SQL statement execution time based on the AI model
before the SQL statement is executed. Based on the estimated SQL time, you can
detect possible abnormal SQL statements and optimize or schedule them in
advance to prevent system running from being affected.

Description

The prediction of AI query time depends on the collection of local query plans.
During query execution, you need to collect the actual query plan (including the
plan structure, operator type, related data source, and filter criteria), actual
execution time of each operator node, cost estimated by the optimizer, number of
rows returned by the optimizer, number of rows estimated by the optimizer, and
number of parallel rows. These records are stored in data tables and managed
persistently, and expired data will be cleared periodically.

After the database kernel automatically collects historical data, the administrator
encodes the data and sends a request to Python through the CURL API to
configure the model, send data, and trigger training. You can call the TensorBoard
API to monitor the training process. The model returns the prediction accuracy of
each project and saves the final model. The database updates the system tables
related to the model information based on the result returned by the AI engine.

This feature is triggered when explain (analyze on, predictor <model_name>)
SELECT... " is executed and the model is converged. The database determines
whether the current model meets the requirements based on the plan encoding. If
the model meets the requirements, the model loading request is sent to Python
(the model needs to be loaded only once after the model training is complete).
After the model is loaded, the plan encoding file is inferred and the prediction
result of each node is returned.

Enhancements

None.

Constraints
● The database system is normal. The user successfully logs in to the database

through identity authentication and accesses the authorized data.

● The SQL syntax is correct and no error is reported.

● SQL statements executed by users do not cause database exceptions.

● In the historical performance data window, the cluster concurrency is stable,
the cluster scale, table structure, and table quantity remain unchanged, the
data volume does not change abruptly, and the GUC parameters related to
query performance remain unchanged. If the preceding conditions are
damaged, the model becomes invalid. In this case, you need to invalidate all
historical performance data, collect data again, and retrain the model.

openGauss
Feature Description 7 AI Capabilities

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 102

● When a model is loaded, the structure, parameters, and training information
of the original model are completely saved. If the original model information
is lost, the model cannot be loaded and needs to be trained again.

● Historical performance data can be properly collected and encoded, and no
error is reported when the encoded data is properly parsed.

● You can install the following software by using the provided installation
scripts or by yourself: Python=3.6.4, configparser==3.8.1, Flask==0.12.2,
Keras==2.2.4, numpy==1.16.4, scikit-learn==0.19.1, pandas==0.25.1,
tensorboard==1.14.0, and tensorflow-gpu==1.14.0 or tensorflow==1.14.0.

● OpenSSL has been installed in the user environment, and the certificate has
been generated using a script or based on the usage description.

● Currently, administrators need to manually synchronize models across
database namespaces. Automatic synchronization is not supported.

Dependencies
None.

openGauss
Feature Description 7 AI Capabilities

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 103

8 Tool Chain

8.1 MySQL to openGauss Migration Tool Chameleon

8.2 OpenGauss Client Tool DataStudio

8.1 MySQL to openGauss Migration Tool Chameleon

Availability

This feature is available since openGauss 3.0.0.

Introduction

Chameleon is Python-based. It supports real-time data replication from MySQL to
openGauss. The tool can replicate initial full data and incremental data in real
time to migrate them from MySQL to openGauss. It supports migration of various
data types in MySQL, and maintains the precision of floating-point data, including
decimal, dec, numeric, float, float4, float8, real, double, double precision and fixed
after migration.

Benefits

You can use Chameleon to migrate data from the MySQL database to the
openGauss database.

Description

Chameleon provides full and incremental data replication functions to migrate
data from the MySQL database to the openGauss database. Chameleon stores the
mappings between MySQL and openGauss data types and supports migration of
various data types in MySQL. Specifically, floating-point data in MySQL, including
decimal, dec, numeric, float, float4, float8, real, double, double precision and fixed,
will be converted to the numeric[p, s] type in openGauss if the precision is
specified or contained by default. If the precision is not specified, the data will be
converted to the numeric data type in openGauss. In this way, the data precision
remains unchanged after offline and online migration.

openGauss
Feature Description 8 Tool Chain

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 104

Enhancements

None.

Constraints
● MySQL 5.7 is supported.
● If incompatibility still exists after data type mapping, table data migration

fails, but the subsequent offline data migration process does not terminate.

Dependencies

None.

8.2 OpenGauss Client Tool DataStudio

Availability

You can obtain the installation package of DataStudio from the openGauss official
website or obtain the source code from Gitee and compile by yourself.

Introduction

DataStudio is a universal and integrated development environment for developers
and database administrators. It simplifies the development and management of
openGauss databases.

DataStudio allows database developers to:

● Manage and create database objects.
● Run SQL statements or SQL scripts.
● Edit and run PL/SQL statements.
● Import and export table data.

Benefits

As a client software used with openGauss databases (currently, only openGauss is
supported), DataStudio helps database developers easily develop applications and
provides key database features on the GUI. The tool makes database inclusive and
improves user loyalty.

Description

Start DataStudio on Windows and you can remotely connect to openGauss and
perform the following operations:

● Connect to the openGauss database over an integrated GUI-based
development environment.

● Efficiently develop SQL.

openGauss
Feature Description 8 Tool Chain

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 105

● Manage or create database objects (databases, schemas, functions, stored
procedures, tables, sequences, columns, indexes, constraints, views, users,
roles, and tablespaces).

● Run SQL statements or SQL scripts.
● Create and execute a stored procedure.
● Add, delete, modify, and query table data.
● Import and export table data.
● Display and export DDL data.
● Import and export connection information.
● Format SQL statements.
● View SQL execution history.
● Display the execution plan and ER diagram.

Enhancements
None.

Constraints
● Supports Windows OS.
● Supports JDK 11 or later versions.

Dependencies
Currently, only openGauss is supported.

openGauss
Feature Description 8 Tool Chain

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 106

9 Middleware

9.1 Distributed Database Capability

9.2 Deploying a Distributed Database Using Kubernetes

9.1 Distributed Database Capability

Availability
This feature is available since openGauss 2.1.0.

Introduction
This feature uses the distributed middleware shardingsphere to provide openGauss
the distributed database capability. When 16 Kunpeng 920 (128 cores) nodes are
used for networking (1 x shardingsphere-proxy, 7 x shardingsphere-jdbc, 8 x
openGauss), the perfect sharding performance is greater than 10 million
transactions per minute C (tpmC).

Benefits
A distributed database that logically has no resource restriction can be built over
the middleware.

Description
With the sharding capability of shardingsphere, multiple openGauss databases can
logically form a larger database with distributed transactions and elastic scaling
capabilities. The usage method is the same as that of an openGauss database.

Enhancements
None.

Constraints
None.

openGauss
Feature Description 9 Middleware

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 107

Dependencies
Shardingsphere middleware

9.2 Deploying a Distributed Database Using
Kubernetes

Availability
This feature is available since openGauss 2.1.0.

Introduction
Deploys a distributed database in one-click mode.

Benefits
Quickly builds a distributed database, and verifies and uses the distributed
capability.

Description
Patroni is used to implement planned switchover and automatic failover in case of
faults. HAProxy is used to implement read and write load balancing between the
primary and standby openGauss nodes. ShardingSphere is used to implement
distributed capabilities. All functions are packaged into images and one-click
deployment scripts are provided.

Enhancements
None.

Constraints
Only CentOS and openEuler are supported.

Dependencies
ShardingSphere, Patroni, HAProxy

openGauss
Feature Description 9 Middleware

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 108

	Contents
	1 High Performance
	1.1 CBO Optimizer
	1.2 LLVM
	1.3 Vectorized Engine
	1.4 Hybrid Row-Column Store
	1.5 Adaptive Compression
	1.6 SQL by pass
	1.7 Kunpeng NUMA Architecture Optimization
	1.8 High Concurrency of Thread Pools
	1.9 SMP for Parallel Execution
	1.10 Xlog no Lock Flush
	1.11 Parallel Page-based Redo For Ustore
	1.12 Row-Store Execution to Vectorized Execution

	2 High Availability (HA)
	2.1 Primary/Standby
	2.2 Logical Replication
	2.3 Online Node Replacement
	2.4 Logical Backup
	2.5 Physical Backup
	2.6 Automatic Job Retry upon Failure
	2.7 Ultimate RTO
	2.8 Cascaded Standby Server
	2.9 Delayed Replay
	2.10 Adding or Deleting a Standby Node
	2.11 Delaying Entering the Maximum Availability Mode
	2.12 Parallel Logical Decoding
	2.13 DCF
	2.14 CM
	2.15 Global SysCache
	2.16 Using a Standby Node to Build a Standby Node

	3 Maintainability
	3.1 Gray Upgrade
	3.2 WDR
	3.3 Slow SQL Diagnosis
	3.4 Session Performance Diagnosis
	3.5 System KPI-aided Diagnosis

	4 Database Security
	4.1 Access Control Model
	4.2 Separation of Control and Access Permissions
	4.3 Database Encryption Authentication
	4.4 Data Encryption and Storage
	4.5 Database Audit
	4.6 Network Communication Security
	4.7 Resource Label
	4.8 Unified Audit
	4.9 Dynamic Data Masking
	4.10 Row-Level Access Control
	4.11 Password Strength Verification
	4.12 Equality Query in a Fully-encrypted Database
	4.13 Ledger Database Mechanism
	4.14 Transparent Data Encryption

	5 Enterprise-Level Features
	5.1 Support for Functions and Stored Procedures
	5.2 SQL Hints
	5.3 Full-Text Indexing
	5.4 Copy Interface for Error Tolerance
	5.5 Partitioning
	5.6 Support for Advanced Analysis Functions
	5.7 Materialized View
	5.8 HyperLogLog
	5.9 Creating an Index Online
	5.10 Autonomous Transaction
	5.11 Global Temporary Table
	5.12 Pseudocolumn ROWNUM
	5.13 Stored Procedure Debugging
	5.14 JDBC Client Load Balancing and Read/Write Isolation
	5.15 In-place Update Storage Engine
	5.16 Publication-Subscription
	5.17 Foreign Key Lock Enhancement
	5.18 Data Compression in OLTP Scenarios

	6 Application Development Interfaces
	6.1 Standard SQL
	6.2 Standard Development Interfaces
	6.3 PostgreSQL API Compatibility
	6.4 PL/Java

	7 AI Capabilities
	7.1 AI4DB: Autonomous Database O&M
	7.1.1 Database Metric Collection, Forecast, and Exception Detection
	7.1.2 Root Cause Analysis for Slow SQL Statements
	7.1.3 Index Recommendation
	7.1.4 Parameter Tuning and Diagnosis
	7.1.5 Slow SQL Statement Discovery

	7.2 DB4AI: Database-driven AI
	7.3 AI in DB
	7.3.1 Predictor: AI Query Time Forecasting

	8 Tool Chain
	8.1 MySQL to openGauss Migration Tool Chameleon
	8.2 OpenGauss Client Tool DataStudio

	9 Middleware
	9.1 Distributed Database Capability
	9.2 Deploying a Distributed Database Using Kubernetes

