
openGauss
3.0.0

Tutoria

Issue 01

Date 2022-03-31

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2022. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

 and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice
The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.
Address: Huawei Industrial Base

Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

Contents

1 Understanding openGauss.. 1
1.1 What Is openGauss?... 1
1.2 Software Architecture.. 3

2 Installation and Login.. 5
2.1 Obtaining and Verifying an Installation Package.. 5
2.2 Preparing the Software and Hardware Installation Environment.. 6
2.3 Installation on a Single Node... 8
2.4 Installation of One Primary and One Standby Nodes..9
2.5 gsql Connection and Usage...10

3 Basic Concepts..12

4 Syntax...15

5 Data Types...17

6 Simple Data Management.. 51
6.1 Creating a Database.. 51
6.2 Creating a Table.. 53
6.3 INSERT INTO Statement... 53
6.4 UPDATE Statement.. 55
6.5 DELETE Statement.. 56
6.6 Viewing Objects... 57
6.7 SELECT Statement.. 58
6.8 Operators... 60
6.9 Expressions.. 64
6.10 WHERE Clause... 74
6.11 ORDER BY Clause... 76
6.12 DISTINCT... 76
6.13 GROUP BY Clause... 78
6.14 HAVING Clause... 78
6.15 Date/Time Functions and Operators... 80
6.16 Mode Matching Operators.. 96
6.17 Aggregate Functions... 100

7 Advanced Data Management.. 103

openGauss
Tutoria Contents

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. ii

7.1 Constraints.. 104
7.2 JOIN... 106
7.3 NULL... 109
7.4 UNION Clause... 109
7.5 Aliases...111
7.6 Indexes... 111
7.7 Batch Processing Mode.. 114
7.8 Views... 115
7.9 SCHEMA...116
7.10 ALTER TABLE Statement.. 118
7.11 TRUNCATE TABLE Statement.. 121
7.12 Transactions... 121
7.13 Cursors... 124
7.14 Partitioned Tables.. 129
7.15 Locks... 147
7.16 Anonymous Blocks...149
7.17 Triggers.. 150
7.18 Stored Procedures.. 152
7.19 Materialized Views.. 154
7.20 Subqueries.. 156
7.21 Permissions...159
7.22 Functions... 164

8 Advanced Features..178
8.1 Index Recommendation... 178
8.2 DB4AI.. 182
8.3 Column Store... 190
8.4 LLVM... 192
8.5 Ustore... 195
8.6 MOT.. 197
8.7 Fully-encrypted Database..205
8.8 DCF.. 208
8.9 SMP... 214

9 Connecting to a Database...218
9.1 C and C++.. 218
9.1.1 ODBC... 218
9.1.2 libpq... 234
9.2 Java.. 240
9.3 Python.. 249

10 Obtaining openGauss Resources... 254

11 Appendix: SQL Syntax..258

openGauss
Tutoria Contents

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. iii

1 Understanding openGauss

1.1 What Is openGauss?

1.2 Software Architecture

1.1 What Is openGauss?
openGauss is a user-friendly, enterprise-level, and open-source relational database
jointly built with partners. openGauss provides multi-core architecture-oriented
ultimate performance, full-link service, data security, AI-based optimization, and
efficient O&M capabilities. Derived from PostgreSQL, openGauss deeply integrates
Huawei's years of R&D experience in the database field and continuously builds
competitive features based on enterprise-level scenario requirements. For the
latest information about openGauss, visit https://opengauss.org/en/.

● openGauss is a database management system.
A database is a structured dataset. It can be any data, such as shopping lists,
photo galleries, or a large amount of information on a company's network. To
add, access, and process massive data stored in computer databases, you
need a database management system (DBMS). The DBMS can manage and
control the database in a unified manner to ensure the security and integrity
of the database. Because computers are very good at handling large amounts
of data, the DBMS plays a central role in computing as standalone utilities or
as part of other applications.

● An openGauss database is a relational database.
A relational database organizes data using a relational model, that is, data is
stored in rows and columns. A series of rows and columns in a relational
database are called tables, which form the database. A relational model can
be simply understood as a two-dimensional table model, and a relational
database is a data organization consisting of two-dimensional tables and
their relationships.
In openGauss, SQL is a standard computer language often used to control the
access to databases and manage data in databases. depending on your
programming environment, you can enter SQL statements directly, embed
SQL statements into code written in another language, or use specific
language APIs with hidden SQL syntax.

openGauss
Tutoria 1 Understanding openGauss

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 1

https://opengauss.org/en/

SQL is defined by the ANSI/ISO SQL standard. The SQL standard has been
developed since 1986 and has multiple versions. In this document, SQL92 is
the standard released in 1992, SQL99 is the standard released in 1999, and
SQL2003 is the standard released in 2003. SQL2011 is the latest version of the
standard. openGauss supports the SQL92, SQL99, SQL2003, and SQL2011
specifications.

● openGauss provides open-source software.

Open-source means that anyone can use and modify the software. Anyone
can download the openGauss software and use it at no cost. You can dig into
the source code and make changes to meet your needs. The openGauss
software is released under the Mulan Permissive Software License v2 (http://
license.coscl.org.cn/MulanPSL2/) to define the software usage scope.

● An openGauss database features high performance, high availability, high
security, easy O&M, and full openness.

– High performance

▪ It provides the multi-core architecture-oriented concurrency control
technology and Kunpeng hardware optimization, and achieves that
the TPC-C benchmark performance reaches 1,500,000 tpmC in
Kunpeng 2-socket servers.

▪ It uses NUMA-Aware data structures as the key kernel structures to
adapt to the trend of using multi-core NUMA architecture on
hardware.

▪ It provides the SQL bypass intelligent fast engine technology.

▪ It provides the USTORE storage engine for frequent update scenarios.

– High availability (HA)

▪ It supports multiple deployment modes, such as primary/standby
synchronization, primary/standby asynchronization, and cascaded
standby server deployment.

▪ It supports data page cyclic redundancy check (CRC), and
automatically restores damaged data pages through the standby
node.

▪ It recovers the standby node in parallel and promotes it to primary to
provide services within 10 seconds.

▪ It provides log replication and primary selection framework based on
the Paxos distributed consistency protocol.

– High security

It supports security features such as fully-encrypted computing, access
control, encryption authentication, database audit, and dynamic data
masking to provide comprehensive end-to-end data security protection.

– Easy O&M

▪ It provides AI-based intelligent parameter tuning and index
recommendation to automatically recommend AI parameters.

openGauss
Tutoria 1 Understanding openGauss

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 2

http://license.coscl.org.cn/MulanPSL2/
http://license.coscl.org.cn/MulanPSL2/

▪ It provides slow SQL diagnosis and multi-dimensional self-
monitoring views to help you understand system performance in real
time.

▪ It provides SQL time forecasting that supports online auto-learning.

– Full openness

▪ It adopts the Mulan Permissive Software License, allowing code to be
freely modified, used, and referenced.

▪ It fully opens database kernel capabilities.

▪ It provides excessive partner certifications, training systems, and
university courses.

1.2 Software Architecture
openGauss is a standalone system that supports one primary and up to eight
standby servers.

Service data is stored on a single physical node, and data access tasks are pushed
to service nodes and then executed. The high concurrency of servers enables quick
response to data processing. In addition, data can be copied to the standby server
through log replication, ensuring high reliability and scalability.

Software Architecture
Figure 1-1 shows the logical components of openGauss.

Figure 1-1 openGauss logical architecture

openGauss
Tutoria 1 Understanding openGauss

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 3

Table 1-1 Architecture description

Name Description

OM Operation Manager (OM) provides management interfaces and
tools for routine maintenance and configuration management of
the database. This module is optional and is often used in
enterprise-level scenarios.

Client
driver

A client driver receives the access requests from applications, and
returns the execution results to the applications. It communicates
with openGauss instances, sends application SQL commands, and
receives execution results. This module is mandatory. The client
program gsql also depends on the driver to connect to the database.

openGau
ss
(Primary/
Standby)

openGauss primary and standby DNs store service data, execute
data queries, and return execution results to the client.
openGauss supports one primary and multiple standbys. You are
advised to deploy them on different physical nodes.
The primary/standby mode is optional. openGauss can also be
deployed in standalone mode. The primary/standby mode is often
used in enterprise-level scenarios.

Storage It functions as the server's local storage resources to store data
permanently.

openGauss
Tutoria 1 Understanding openGauss

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 4

2 Installation and Login

openGauss supports simplified installation using scripts. Simplified installation
includes standalone installation and installation of one primary and one standby
nodes.

2.1 Obtaining and Verifying an Installation Package

2.2 Preparing the Software and Hardware Installation Environment

2.3 Installation on a Single Node

2.4 Installation of One Primary and One Standby Nodes

2.5 gsql Connection and Usage

2.1 Obtaining and Verifying an Installation Package

Procedure

Step 1 Download the installation package of the corresponding platform from the
openGauss community.

1. Log in to the openGauss community and download the latest installation
package of the corresponding platform. For individual developers or non-
enterprise-level environments, download the simplified installation package
(without installing components such as the OM).

2. Click Download.

Step 2 Check the installation package.

Decompress the installation package and check whether the installation directory
and files are complete. Run the following commands in the directory where the
installation package is stored:
mkdir openGauss
tar -jxf openGauss-x.x.x-openEuler-64bit.tar.bz2 –C openGauss
ls -lb openGauss/

Run the ls command to display information similar to the following:
total 90296
drwx------ 3 root root 4096 Mar 31 21:18 bin
drwx------ 3 root root 4096 Mar 31 21:18 etc
drwx------ 3 root root 4096 Mar 31 21:18 include

openGauss
Tutoria 2 Installation and Login

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 5

https://opengauss.org/en/download.html

drwx------ 4 root root 4096 Mar 31 21:18 jre
drwx------ 5 root root 4096 Mar 31 21:18 lib
drwx------ 5 root root 4096 Mar 31 21:18 share
drwx------ 2 root root 4096 Mar 31 21:18 simpleInstall
-rw------- 1 root root 32 Mar 31 21:18 version.cfg

----End

2.2 Preparing the Software and Hardware Installation
Environment

This section describes the preparations for installation. It is recommended that
servers to be deployed on openGauss have the same software and hardware
configurations.

Hardware requirements
Table 2-1 lists the minimum hardware requirements of the openGauss server.
When planning the hardware configuration of a product, consider the data scale
and expected database response speed. Plan hardware as required.

Table 2-1 Hardware requirements

Item Configuration Description

Memor
y

It is recommended that the memory be 32 GB or above for function
debugging.
In performance tests and commercial deployment, it is recommended
that the memory be 128 GB or above for single-instance deployment.
Complex queries require much more memory, and therefore, the
memory may be insufficient in high-concurrency scenarios. In this
case, it is recommended that a large-memory server or load
management be used to restrict concurrency on the system.

CPU It is recommended at least one 8-core 2.0 GHz CPU be used for
function debugging.
In performance tests and commercial deployment, it is recommended
that one 16-core 2.0 GHz CPU be used.
You can set CPUs to hyper-threading or non-hyper-threading mode.
NOTE

For individual developers, the minimum configuration is 2 cores and 4 GB
memory, and the recommended configuration is 4 cores and 8 GB memory.
Currently, openGauss supports only the CPUs of Kunpeng servers and x86_64-
based universal PC servers.

openGauss
Tutoria 2 Installation and Login

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 6

Item Configuration Description

Disk Hard disks used for installing openGauss must meet the following
requirements:
● At least 1 GB is used to install the openGauss applications.
● About 300 MB is used for each host to store metadata.
● More than 70% of available disk space is reserved to store data.
You are advised to configure the system disk to RAID 1 and data disk
to RAID 5 and plan four groups of RAID 5 data disks for installing
openGauss. RAID configuration is not described in this document. You
can configure RAID by following instructions in the hardware vendors'
manuals or using common methods found on the Internet. Set Disk
Cache Policy to Disabled to avoid data loss in an unexpected power-
off.
openGauss supports using an SSD with the SAS API and NVMe
protocol deployed in RAID mode as the primary storage device of the
database.

Networ
k
Require
ments

Minimum 300 Mbit/s Ethernet is required.
You are advised to bond two NICs for redundancy. The configuration
is not described in this document. You can configure it by following
instructions in the manual provided by the hardware manufacturer.

Software Requirements

Table 2-2 Software requirements

Software Configuration Description

Linux OS ● Arm:
– openEuler 20.3 LTS (recommended)
– Kirin V10

● x86:
– openEuler 20.3LTS
– CentOS 7.6

NOTE
The current installation package can be used only on the
English operating system.

Linux file system It is recommended that the number of remaining inodes be
greater than 1.5 billion.

Tool bzip2

Software Dependency Requirements
Table 2-3 describes the openGauss software dependency requirements.

openGauss
Tutoria 2 Installation and Login

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 7

You are advised to use the default installation packages of the following
dependent software in the listed OS installation CD-ROMs or sources. If the
following software does not exist, refer to the recommended versions of the
software.

Table 2-3 Software dependency requirements

Software Recommended Version

libaio-devel 0.3.109-13

flex 2.5.31 or later

bison 2.7-4

ncurses-devel 5.9-13.20130511

glibc-devel 2.17-111

patch 2.7.1-10

redhat-lsb-core 4.1

readline-devel 7.0-13

libnsl (in the openEuler + x86
environment)

2.28-36

2.3 Installation on a Single Node
Step 1 Create a user group dbgroup.

groupadd dbgroup

Step 2 Create a common user omm in the dbgroup user group and set the password to
Gauss_234.
useradd -g dbgroup omm
passwd omm

Step 3 Log in to the host where the openGauss package is installed as user omm and
decompress the openGauss package to the installation directory.
tar -jxf openGauss-x.x.x-openEuler-64bit.tar.bz2 -C /opt/software/openGauss

Step 4 Assume that the decompressed package is stored in the /opt/software/
openGauss directory. Go to the simpleInstall directory.
cd /opt/software/openGauss/simpleInstall

Step 5 Run the install.sh script to install openGauss.
sh install.sh -w xxxx

In the preceding command, -w indicates the initial database password (specified
by gs_initdb). This parameter is mandatory for security purposes.

Step 6 After the installation is complete, check whether the process is normal by using ps
and gs_ctl.
ps ux | grep gaussdb
gs_ctl query -D /opt/software/openGauss/data/single_node

openGauss
Tutoria 2 Installation and Login

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 8

Run the ps command to display information similar to the following:
omm 24209 11.9 1.0 1852000 355816 pts/0 Sl 01:54 0:33 /opt/software/openGauss/bin/gaussdb -
D /opt/software/openGauss/single_node
omm 20377 0.0 0.0 119880 1216 pts/0 S+ 15:37 0:00 grep --color=auto gaussdb

Run the gs_ctl command to display information similar to the following:
gs_ctl query ,datadir is /opt/software/openGauss/data/single_node
HA state:
 local_role : Normal
 static_connections : 0
 db_state : Normal
 detail_information : Normal

Senders info:
 No information

 Receiver info:
No information

----End

2.4 Installation of One Primary and One Standby
Nodes

Procedure

Step 1 Create a user group dbgroup.
groupadd dbgroup

Step 2 Create a common user omm in the dbgroup user group and set the password to
Gauss_234.
useradd -g dbgroup omm
passwd omm

Step 3 Log in to the host where the package is installed as user omm and decompress
the openGauss package to the installation directory.
tar -jxf openGauss-x.x.x-openEuler-64bit.tar.bz2 -C /opt/software/openGauss

Step 4 Assume that the decompressed package is stored in the /opt/software/
openGauss directory. Go to the simpleInstall directory.
cd /opt/software/openGauss/simpleInstall

Step 5 Run the install.sh script to install openGauss.
sh install.sh -w xxxx --multinode

In the preceding command, -w indicates the initial database password (specified
by gs_initdb). This parameter is mandatory for security purposes.

Step 6 After the installation is complete, check whether the process is normal by using ps
and gs_ctl.
ps ux | grep gaussdb
gs_ctl query -D /opt/software/openGauss/data/master

Run the ps command to display information similar to the following:
omm 4879 11.8 1.1 2082452 373832 pts/0 Sl 14:26 8:29 /opt/software/openGauss/bin/gaussdb -D /opt/
software/openGauss/data/master -M primary

omm 5083 1.1 0.9 1819988 327200 pts/0 Sl 14:26 0:49 /opt/software/openGauss/bin/gaussdb -D /opt/
software/openGauss/data/slave -M standby

openGauss
Tutoria 2 Installation and Login

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 9

omm 20377 0.0 0.0 119880 1216 pts/0 S+ 15:37 0:00 grep --color=auto gaussdb

Run the gs_ctl command to display information similar to the following:
gs_ctl query ,datadir is /opt/software/openGauss/data/master
HA state:
 local_role : Primary
 static_connections : 1
 db_state : Normal
 detail_information : Normal

Senders info:
 sender_pid : 5165
 local_role : Primary
 peer_role : Standby
 peer_state : Normal
 state : Streaming
 sender_sent_location : 0/4005148
 sender_write_location : 0/4005148
 sender_flush_location : 0/4005148
 sender_replay_location : 0/4005148
 receiver_received_location : 0/4005148
 receiver_write_location : 0/4005148
 receiver_flush_location : 0/4005148
 receiver_replay_location : 0/4005148
 sync_percent : 100%
 sync_state : Sync
 sync_priority : 1
 sync_most_available : Off
 channel : 10.244.44.52:27001-->10.244.44.52:35912

 Receiver info:
No information

----End

2.5 gsql Connection and Usage
gsql provided by openGauss is a database connection tool running in the CLI. gsql
provides basic and advanced functions of databases to facilitate user operations.
This section describes how to use gsql to connect to a local database. You need to
provide a database name and a port number of the primary database node.

Step 1 Log in as the OS user omm to the primary node of the database.

Step 2 Connect to a database.

After the database is installed, a database named postgres is generated by
default. When connecting to a database for the first time, you can connect to this
database.

Run the following command to connect to the postgres database:

gsql -d postgres -p 8000

postgres is the name of the database to be connected, and 8000 is the port
number of the database primary node. Replace the values as required.

If information similar to the following is displayed, the connection succeeds:

gsql((openGauss x.x.x build f521c606) compiled at 2021-09-16 14:55:22 commit 2935 last mr 6385 release)
Non-SSL connection (SSL connection is recommended when requiring high-security)
Type "help" for help.

openGauss=#

openGauss
Tutoria 2 Installation and Login

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 10

User omm is the administrator, and DBNAME=# is displayed. If you log in to and
connect to the database as a common user, DBNAME=> is displayed, prompting
you to enter SQL statements.

Non-SSL connection indicates that the database is not connected in SSL mode.

Step 3 You are advised to change the password upon the first login to improve security.
The command is as follows:
openGauss=# ALTER ROLE omm IDENTIFIED BY 'XXXXXXXX' REPLACE 'XXXXXXXX';

Step 4 gsql provides advanced functions for you to use the database.

The gsql program has some internal commands that are not SQL commands. They
begin with a backslash (\). For example:

● You can run the following command to query the openGauss version and
copyright information:
openGauss=# \copyright

● You can run the following command to obtain the help syntax of various
openGauss SQL commands:
openGauss=# \h

● You can run the following command to query all data and description
information in the openGauss:
openGauss=# \l

Step 5 Exit the database.
openGauss=# \q

By default, a client is automatically disconnected if it remains idle for a period
longer than 10 minutes (the default value of session_timeout) after connecting
to the database.

----End

openGauss
Tutoria 2 Installation and Login

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 11

3 Basic Concepts

openGauss is a relational database management system (RDBMS). A relational
database organizes data using a relational model, that is, data is stored in rows
and columns.

openGauss database nodes store data on disks. Logically, objects on a database
node include tablespaces, databases, datafile segments, tables, and blocks. Figure
3-1 shows the relationships between objects.

Figure 3-1 Database logical architecture

openGauss
Tutoria 3 Basic Concepts

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 12

Database
A collection of data that is stored together and can be accessed, managed, and
updated.

Databases manage various data objects and are isolated from each other. While
creating a database, you can specify a tablespace. If you do not specify it, the
object will be saved to the PG_DEFAULT tablespace by default. Objects managed
by a database can be distributed to multiple tablespaces.

Block
A block is the basic unit of database management. Its default size is 8 KB.

Row
A row (tuple or record) is a set of related data, for example, a piece of data
subscribed by a user.

Column
Each column is referred to as a field. The value in each field (column) represents a
data type. For example, if a table contains three fields Name, City, and State, it
has three columns Name, City, and State. In every row of the table, the Name
column contains a name, the City column contains a city, and the State column
contains a state.

Table
A table consists of rows and columns. It is an object used to store data in a
database and is the basis of the entire database system.

Each table belongs to only one database and one tablespace. The datafile
segments storing the data of the same table must be in the same tablespace.

Datafile Segment
Generally, each table corresponds to only one datafile segment. A table containing
more than 1 GB of data is stored in multiple datafile segments.

Tablespace
In openGauss, a tablespace is a directory that provides an abstract layer between
physical data and logical data. It allocates storage space for all database objects
to store the physical files of the databases. Files are physically isolated using
tablespaces and managed by a file system.

Multiple tablespaces can exist. When you create an object, you can specify which
tablespace it belongs to.

Schema
Collection of database objects, including logical structures, such as tables, views,
sequences, stored procedures, synonyms, indexes, and database links.

openGauss
Tutoria 3 Basic Concepts

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 13

Transaction
It is a logical unit of work performed within a DBMS, and treated in a coherent
and reliable way independent of other transactions. In a relational database, a
transaction can be a SQL statement, a set of SQL statements, or a program.

In addition, a transaction is the basic unit for recovery and concurrency control. It
must have the ACID feature.

● Atomicity: Operations in a transaction must be either all performed or none
performed because a transaction is an integral unit of work.

● Consistency: A transaction must change a database from one consistent state
to another consistent state. Consistency is closely related to atomicity.

● Isolation: The execution of a transaction cannot be interfered by other
transactions. It means that operations and data used in a transaction are
isolated from those in other concurrent transactions. Concurrent transactions
are independent of each other.

● Durability or Permanence: Once a transaction is committed, the data in the
database is changed permanently. Subsequent operations or faults should not
have any impact on them.

openGauss
Tutoria 3 Basic Concepts

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 14

4 Syntax

By default, after you log in to the installed database, you can run the \help
statement to view syntax of all the SQL syntax of the openGauss.
openGauss=# \help
Available help:
ABORT ALTER TABLE CREATE DATABASE CREATE TEXT
SEARCH CONFIGURATION DROP OPERATOR MERGE
 ALTER APP WORKLOAD GROUP ALTER TABLE PARTITION CREATE DIRECTORY
CREATE TEXT SEARCH DICTIONARY DROP OWNED MOVE
 ALTER APP WORKLOAD GROUP MAPPING ALTER TABLESPACE CREATE
EXTENSION CREATE TRIGGER DROP PACKAGE PREPARE
 ALTER AUDIT POLICY ALTER TEXT SEARCH CONFIGURATION CREATE FOREIGN TABLE
CREATE TYPE DROP PACKAGE BODY PREPARE TRANSACTION
 ALTER DATA SOURCE ALTER TEXT SEARCH DICTIONARY CREATE FUNCTION
CREATE USER DROP PROCEDURE PUBLISH SNAPSHOT
 ALTER DATABASE ALTER TRIGGER CREATE GROUP CREATE
VIEW DROP RESOURCE LABEL PURGE SNAPSHOT
 ALTER DEFAULT PRIVILEGES ALTER TYPE CREATE INDEX CREATE
WEAK PASSWORD DICTIONARY DROP RESOURCE POOL REASSIGN OWNED
 ALTER DIRECTORY ALTER USER CREATE LANGUAGE CREATE
WORKLOAD GROUP DROP ROLE REFRESH MATERIALIZED VIEW
 ALTER EXTENSION ALTER VIEW CREATE MASKING POLICY
CURSOR DROP ROW LEVEL SECURITY POLICY REINDEX
 ALTER FOREIGN TABLE ALTER WORKLOAD GROUP CREATE MATERIALIZED VIEW
DEALLOCATE DROP SCHEMA RESET
 ALTER FOREIGN TABLE FOR HDFS ANALYSE CREATE MODEL
DECLARE DROP SEQUENCE REVOKE
 ALTER FUNCTION ANALYZE CREATE NODE
DELETE DROP SERVER ROLLBACK
 ALTER GROUP ANONYMOUS BLOCK CREATE NODE GROUP
DO DROP SYNONYM ROLLBACK PREPARED
 ALTER INDEX ARCHIVE SNAPSHOT CREATE OPERATOR DROP APP
WORKLOAD GROUP DROP TABLE SAMPLE SNAPSHOT
 ALTER LARGE OBJECT BEGIN CREATE PACKAGE DROP APP
WORKLOAD GROUP MAPPING DROP TABLESPACE SAVEPOINT
 ALTER MASKING POLICY CALL CREATE PACKAGE BODY DROP
AUDIT POLICY DROP TEXT SEARCH CONFIGURATION SELECT
 ALTER MATERIALIZED VIEW CHECKPOINT CREATE PROCEDURE DROP
CLIENT MASTER KEY DROP TEXT SEARCH DICTIONARY SELECT INTO
 ALTER NODE CLEAN CONNECTION CREATE RESOURCE LABEL DROP
COLUMN ENCRYPTION KEY DROP TRIGGER SET
 ALTER NODE GROUP CLOSE CREATE RESOURCE POOL DROP
DATA SOURCE DROP TYPE SET CONSTRAINTS
 ALTER OPERATOR CLUSTER CREATE ROLE DROP
DATABASE DROP USER SET ROLE
 ALTER RESOURCE LABEL COMMENT CREATE ROW LEVEL SECURITY POLICY
DROP DIRECTORY DROP VIEW SET SESSION AUTHORIZATION
 ALTER RESOURCE POOL COMMIT CREATE SCHEMA DROP
EXTENSION DROP WEAK PASSWORD DICTIONARY SET TRANSACTION

openGauss
Tutoria 4 Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 15

 ALTER ROLE COMMIT PREPARED CREATE SEQUENCE DROP
FOREIGN TABLE DROP WORKLOAD GROUP SHOW
 ALTER ROW LEVEL SECURITY POLICY COPY CREATE SERVER DROP
FUNCTION END START TRANSACTION
 ALTER SCHEMA CREATE APP WORKLOAD GROUP CREATE SNAPSHOT AS
DROP GROUP EXECUTE TRUNCATE
 ALTER SEQUENCE CREATE APP WORKLOAD GROUP MAPPING CREATE SNAPSHOT
FROM DROP INDEX EXECUTE DIRECT UPDATE
 ALTER SERVER CREATE AUDIT POLICY CREATE SYNONYM DROP
MASKING POLICY EXPLAIN VACUUM
 ALTER SESSION CREATE BARRIER CREATE TABLE DROP
MATERIALIZED VIEW FETCH VALUES
 ALTER SYNONYM CREATE CLIENT MASTER KEY CREATE TABLE AS DROP
MODEL GRANT
 ALTER SYSTEM KILL SESSION CREATE COLUMN ENCRYPTION KEY CREATE TABLE
PARTITION DROP NODE INSERT
 ALTER SYSTEM SET CREATE DATA SOURCE CREATE TABLESPACE DROP
NODE GROUP LOCK

You can run the \h name command to view detailed syntax information. For
example:

openGauss=# \h ABORT
Command: ABORT
Description: abort the current transaction
Syntax:
ABORT [WORK | TRANSACTION] ;

SQL Statements
An SQL statement usually contains keywords, identifiers (columns), constants, and
special characters. For example, a simple SQL statement is as follows:

SELECT id, name FROM t1;

- SELECT id, name FROM t1

Type Keyword Identifiers
(columns)

Keyword Identifier

Description Command Columns id
and name

Statement,
which is used
to set
conditions,
rules, or
others.

Table name

For details about the SQL syntax, see 11 Appendix: SQL Syntax.

openGauss
Tutoria 4 Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 16

5 Data Types

Numeric Types
Table 5-1 lists all available types.

Table 5-1 Integer types

Name Description Storag
e
Space

Value Range

TINYINT Tiny integer, also
called INT1.

1 byte 0-255

SMALLINT Small integer, also
called INT2.

2 bytes –32,768 to +32,767

INTEGER Typical choice for
integers, also called
INT4.

4 bytes –2,147,483,648 to +2,147,483,647

BINARY_IN
TEGER

Alias of INTEGER. 4 bytes –2,147,483,648 to +2,147,483,647

BIGINT Big integer, also
called INT8.

8 bytes –9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

int16 A 16-byte certificate
cannot be used to
create tables.

16
bytes

–
170,141,183,460,469,231,731,687,
303,715,884,105,728 to
+170,141,183,460,469,231,731,68
7,303,715,884,105,727

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 17

Table 5-2 Arbitrary precision types

Name Description Storage Space Value Range

NUMERIC[
(p[,s])],
DECIMAL[(
p[,s])]

The value range
of p (precision) is
[1,1000], and the
value range of s
(scale) is [0,p].
NOTE

p indicates the
total digits, and s
indicates the
decimal digit.

The precision is
specified by users.
Every four decimal
digits occupy two
bytes, and an extra
eight-byte overhead
is added to the
entire data.

Up to 131,072 digits
before the decimal
point and up to 16,383
digits after the decimal
point when no
precision is specified

NUMBER[(
p[,s])]

Alias of the
NUMERIC type.

The precision is
specified by users.
Every four decimal
digits occupy two
bytes, and an extra
eight-byte overhead
is added to the
entire data.

Up to 131,072 digits
before the decimal
point and up to 16,383
digits after the decimal
point when no
precision is specified

Table 5-3 Serial integers

Name Description Storage
Space

Value Range

SMALLSERIAL 2-byte serial
integer.

2 bytes –32,768 to +32,767

SERIAL 4-byte serial
integer.

4 bytes –2,147,483,648 to
+2,147,483,647

BIGSERIAL 8-byte serial
integer.

8 bytes –9,223,372,036,854,775,808
to
+9,223,372,036,854,775,807

LARGESERIAL 16-byte serial
integer.

16 bytes –
170,141,183,460,469,231,731,
687,303,715,884,105,728 to
+170,141,183,460,469,231,73
1,687,303,715,884,105,727

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 18

Table 5-4 Floating point types

Name Description Storage Space Value Range

REAL,
FLOAT4

Single precision
floating points,
which is not very
precise.

4 bytes –3.402E+38 to 3.402E
+38, 6-bit decimal
digits

DOUBLE
PRECISION
,
FLOAT8

Double precision
floating points,
which is not very
precise.

8 bytes –1.79E+308 to 1.79E
+308, 15-bit decimal
digits

FLOAT[(p)
]

Floating points,
which is not very
precise. The value
range of p
(precision) is
[1,53].
NOTE

p is the precision,
indicating the total
decimal digits.

4 or 8 bytes REAL or DOUBLE
PRECISION is selected
as an internal identifier
based on precision (p).
If no precision is
specified, DOUBLE
PRECISION is used as
the internal identifier.

BINARY_D
OUBLE

Alias of DOUBLE
PRECISION.

8 bytes –1.79E+308 to 1.79E
+308, 15-bit decimal
digits

DEC[(p[,s])
]

The value range
of p (precision) is
[1,1000], and the
value range of s
(scale) is [0,p].
NOTE

p indicates the
total digits, and s
indicates the
decimal digit.

The precision is
specified by users.
Every four decimal
digits occupy two
bytes, and an extra
eight-byte overhead
is added to the
entire data.

Up to 131,072 digits
before the decimal
point and up to 16,383
digits after the decimal
point when no
precision is specified

INTEGER[(
p[,s])]

The value range
of p (precision) is
[1,1000], and the
value range of s
(scale) is [0,p].

The precision is
specified by users.
Every four decimal
digits occupy two
bytes, and an extra
eight-byte overhead
is added to the
entire data.

N/A

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 19

Boolean Types

Table 5-5 Boolean types

Name Description Storage
Space

Value

BOOLEAN Boolean type. 1 byte ● true
● false
● null (unknown)

Character Types
Table 5-6 lists the character data types supported by openGauss.

Table 5-6 Character types

Name Description Storage Space

CHAR(n)
CHARACTER(n)
NCHAR(n)

Fixed-length character string. Empty
characters are filled in with blank spaces.
n indicates the string length. If it is not
specified, the default precision 1 is used.

The maximum
size is 10 MB.

VARCHAR(n)
CHARACTER
VARYING(n)

Variable-length string. n indicates the
string length.

The maximum
size is 10 MB.

VARCHAR2(n) Variable-length string. It is the alias of
the VARCHAR(n) type. n indicates the
string length.

The maximum
size is 10 MB.

NVARCHAR2(n) Variable-length string. n indicates the
string length.

The maximum
size is 10 MB.

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 20

Name Description Storage Space

TEXT Variable-length string. The maximum
size is 1 GB
minus 1 byte.
However, the
size of the
column
description
header and
the size of the
tuple (less
than 1 GB
minus 1 byte)
where the
column is
located must
also be
considered.
Therefore, the
maximum size
of the TEXT
type may be
less than 1 GB
minus 1 byte.

CLOB Big text object. It is the alias of the TEXT
type.

The maximum
size is 1 GB
minus 1 byte.
However, the
size of the
column
description
header and
the size of the
tuple (less
than 1 GB
minus 1 byte)
where the
column is
located must
also be
considered.
Therefore, the
maximum size
of the CLOB
type may be
less than 1 GB
minus 1 byte.

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 21

NO TE

1. In addition to the restriction on the size of each column, the total size of each tuple
cannot exceed 1 GB minus 1 byte and is affected by the control header information of
the column, the control header information of the tuple, and whether null columns exist
in the tuple.

2. NCHAR is the alias of the bpchar type, and NCHAR(n) is the alias of the b(n) type
bpchar(n).

In openGauss, there are two other fixed-length character types, as shown in Table
5-7. The name type exists only for the storage of identifiers in the internal system
catalogs and is not intended for general users. Its length is currently defined as 64
bytes (63 usable characters plus a terminator). The type "char" only uses one byte
of storage. It is internally used in the system catalogs as a simplistic enumeration
type.

Table 5-7 Special character types

Name Description Storage Space

name Internal type for object names. 64 bytes

"char" Single-byte internal type. 1 byte

Binary Types
Table 5-8 lists the binary data types supported by openGauss.

Table 5-8 Binary data types

Name Description Storage Space

BLOB Binary large object
(BLOB).
NOTE

Column storage cannot be
used for the BLOB type.

Its maximum length is 1073733621
bytes (1 GB – 8203 bytes).

RAW Variable-length
hexadecimal string.
NOTE

Column store cannot be
used for the raw type.

4 bytes plus the actual hexadecimal
string. Its maximum length is
1073733621 bytes (1 GB – 8203
bytes).

BYTEA Variable-length binary
string.

4 bytes plus the actual binary string.
Its maximum length is 1073733621
bytes (1 GB – 8203 bytes).

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 22

Name Description Storage Space

BYTEAWIT
HOUTORD
ERWITHEQ
UALCOL

Variable-length binary
character string (new type
for the encryption feature.
If the encryption type of
the encrypted column is
specified as deterministic
encryption, the column
type is
BYTEAWITHOUTORDER-
WITHEQUALCOL). The
original data type is
displayed when the
encrypted table is printed
by running the meta
command.

4 bytes plus the actual binary string.
The maximum value is 1073741771
bytes (1 GB – 53 bytes).

BYTEAWIT
HOUTORD
ERCOL

Variable-length binary
character string (new type
for the encryption feature.
If the encryption type of
the encrypted column is
specified as random
encryption, the column
type is
BYTEAWITHOUTORDER-
COL). The original data
type is displayed when the
encrypted table is printed
by running the meta
command.

4 bytes plus the actual binary string.
The maximum value is 1073741771
bytes (1 GB – 53 bytes).

_BYTEAWIT
HOUTORD
ERWITHEQ
UALCOL

Variable-length binary
character string, which is a
new type for the
encryption feature.

4 bytes plus the actual binary string.
The maximum value is 1073741771
bytes (1 GB – 53 bytes).

_BYTEAWIT
HOUTORD
ERCOL

Variable-length binary
character string, which is a
new type for the
encryption feature.

4 bytes plus the actual binary string.
The maximum value is 1073741771
bytes (1 GB – 53 bytes).

NO TE

● In addition to the size limitation on each column, the total size of each tuple is
1073733621 bytes (1 GB – 8203 bytes).

● BYTEAWITHOUTORDERWITHEQUALCOL, BYTEAWITHOUTORDERCOL,
_BYTEAWITHOUTORDERWITHEQUALCOL, and _BYTEAWITHOUTORDERCOL cannot be
directly used to create a table.

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 23

Date/Time Types
Table 5-9 lists the date/time types supported by openGauss.

NO TE

If the time format of another database is different from that of openGauss, modify the
value of the DateStyle parameter to keep them consistent.

Table 5-9 Date/Time types

Name Description Storage Space

DATE Date and time. 4 bytes (The actual
storage space is 8
bytes.)

TIME [(p)]
[WITHOUT TIME
ZONE]

Time within one day.
p indicates the precision after the
decimal point. The value ranges
from 0 to 6.

8 bytes

TIME [(p)] [WITH
TIME ZONE]

Time within one day (with time
zone).
p indicates the precision after the
decimal point. The value ranges
from 0 to 6.

12 bytes

TIMESTAMP[(p)]
[WITHOUT TIME
ZONE]

Date and time.
p indicates the precision after the
decimal point. The value ranges
from 0 to 6.

8 bytes

TIMESTAMP[(p)]
[WITH TIME ZONE]

Date and time (with time zone).
TIMESTAMP is also called
TIMESTAMPTZ.
p indicates the precision after the
decimal point. The value ranges
from 0 to 6.

8 bytes

SMALLDATETIME Date and time (without time zone).
The precision is minute. A duration
between 30s and 60s is rounded
into 1 minute.

8 bytes

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 24

Name Description Storage Space

INTERVAL DAY (l)
TO SECOND (p)

Time interval (X days X hours X
minutes X seconds).
● l: indicates the precision of days.

The value ranges from 0 to 6.
For compatibility, the precision
functions are not supported.

● p: indicates the precision of
seconds. The value ranges from
0 to 6. The digit 0 at the end of
a decimal number is not
displayed.

16 bytes

INTERVAL [FIELDS]
[(p)]

Time interval.
● FIELDS: YEAR, MONTH, DAY,

HOUR, MINUTE, SECOND, DAY
TO HOUR, DAY TO MINUTE,
DAY TO SECOND, HOUR TO
MINUTE, HOUR TO SECOND,
or MINUTE TO SECOND.

● p: indicates the precision of
seconds. The value ranges from
0 to 6. p takes effect only when
FIELDS is SECOND, DAY TO
SECOND, HOUR TO SECOND,
or MINUTE TO SECOND. The
digit 0 at the end of a decimal
number is not displayed.

12 bytes

reltime Relative time interval. The format
is as follows:
X years X months X days XX:XX:XX
The Julian calendar is used. It
specifies that a year has 365.25
days and a month has 30 days. The
relative time interval needs to be
calculated based on the input
value. The output format is
POSTGRES.

4 bytes

abstime Date and time. The format is as
follows:
YYYY-MM-DD hh:mm:ss+timezone
The value range is from
1901-12-13 20:45:53 GMT to
2038-01-18 23:59:59 GMT. The
precision is second.

4 bytes

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 25

Geometric Types
Table 5-10 lists the geometric types that can be used in openGauss. The most
basic type is point which forms the basis for all of the other types.

Table 5-10 Geometric types

Name Storage
Space

Description Representation

point 16 bytes Point on a plane (x,y)

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Box ((x1,y1),(x2,y2))

path 16 + 16n
bytes

Closed path (similar to
polygon)

((x1,y1),...)

path 16+16n
bytes

Open path [(x1,y1),...]

polygon 40+16n
bytes

Polygon (similar to closed
path)

((x1,y1),...)

circle 24 bytes Circle <(x,y),r> (center point
and radius)

A rich set of functions and operators is available in openGauss to perform various
geometric operations, such as scaling, translation, rotation, and determining
intersections.

● Points
Points are the fundamental two-dimensional building block for geometric
types. Values of the point type are specified using either of the following
syntaxes:
(x , y)
x , y

x and y are the respective coordinates, as floating-point numbers.
Points are output using the first syntax.

● Line Segments
Line segments (lseg) are represented by pairs of points. Values of the lseg
type are specified using any of the following syntaxes:
[(x1 , y1) , (x2 , y2)]
((x1 , y1) , (x2 , y2))
(x1 , y1) , (x2 , y2)
x1 , y1 , x2 , y2

(x1,y1) and (x2,y2) are the end points of the line segment.
Line segments are output using the first syntax.

● Boxes
Boxes are represented by pairs of points that are opposite corners of the box.
Values of the box type are specified using any of the following syntaxes:

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 26

((x1 , y1) , (x2 , y2))
(x1 , y1) , (x2 , y2)
x1 , y1 , x2 , y2

(x1,y1) and (x2,y2) are any two opposite corners of the box.
Boxes are output using the second syntax.
Any two opposite corners can be supplied on input, but in this order, the
values will be reordered as needed to store the upper right and lower left
corners.

● Paths
Paths are represented by lists of connected points. Paths can be open, where
the first and last points in the list are considered not connected, or closed,
where the first and last points are considered connected.
Values of the path type are specified using any of the following syntaxes:
[(x1 , y1) , ... , (xn , yn)]
((x1 , y1) , ... , (xn , yn))
(x1 , y1) , ... , (xn , yn)
(x1 , y1 , ... , xn , yn)
x1 , y1 , ... , xn , yn

The points are the end points of the line segments comprising the path.
Square brackets ([]) indicate an open path, while parentheses (()) indicate a
closed path. When the outermost parentheses are omitted, as in the third
through fifth syntax, a closed path is assumed.
Paths are output using the first or second syntax.

● Polygons
Polygons are represented by lists of points (the vertexes of the polygon).
Polygons are very similar to closed paths, but are stored differently and have
their own set of support functions.
Values of the polygon type are specified using any of the following syntaxes:
((x1 , y1) , ... , (xn , yn))
(x1 , y1) , ... , (xn , yn)
(x1 , y1 , ... , xn , yn)
x1 , y1 , ... , xn , yn

The points are the end points of the line segments comprising the boundary
of the polygon.
Polygons are output using the first syntax.

● Circles
Circles are represented by a center point and radius. Values of the circle type
are specified using any of the following syntaxes:
< (x , y) , r >
((x , y) , r)
(x , y) , r
x , y , r

(x,y) is the center point and r is the radius of the circle.
Circles are output using the first syntax.

Network Address Types
openGauss offers data types to store IPv4, IPv6, and MAC addresses.

It is better to use these types instead of plain text types to store network
addresses, because these types offer input error check as well as specialized
operators and functions.

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 27

Table 5-11 Network address types

Name Storage Space Description

cidr 7 or 19 bytes IPv4 or IPv6 networks

inet 7 or 19 bytes IPv4 or IPv6 hosts and networks

macaddr 6 bytes MAC address

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6
addresses, including IPv4 addresses encapsulated in or mapped to IPv6 addresses,
such as ::10.2.3.4 or ::ffff:10.4.3.2.

● cidr
The cidr type (Classless Inter-Domain Routing) holds an IPv4 or IPv6 network
address. The format for specifying networks is address/y where address is the
network represented as an IPv4 or IPv6 address, and y is the number of bits in
the netmask. If y is omitted, it is calculated using assumptions from the older
classful network numbering system, except it will be at least large enough to
include all of the bytes written in the input.

Table 5-12 cidr type input examples

cidr Input cidr Output abbrev(cidr)

192.168.100.128/25 192.168.100.128/25 192.168.100.128/25

192.168/24 192.168.0.0/24 192.168.0/24

192.168/25 192.168.0.0/25 192.168.0.0/25

192.168.1 192.168.1.0/24 192.168.1/24

192.168 192.168.0.0/24 192.168.0/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64

2001:4f8:3:ba:
2e0:81ff:fe22:d1f1/128

2001:4f8:3:ba:
2e0:81ff:fe22:d1f1/128

2001:4f8:3:ba:
2e0:81ff:fe22:d1f1

::ffff:1.2.3.0/120 ::ffff:1.2.3.0/120 ::ffff:1.2.3/120

::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128

● inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all
in one field. The subnet is represented by the number of network address bits

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 28

present in the host address (the "netmask"). If the netmask is 32 and the
address is an IPv4 address, then the value does not indicate a subnet but a
single host. In IPv6, because the address length is 128 bits, 128 bits specify a
unique host address.
The input format for this type is address/y where address is an IPv4 or IPv6
address and y is the number of bits in the netmask. If the /y portion is
omitted, the netmask is 32 for an IPv4 address and 128 for an IPv6 address,
and the value represents just a single host. On display, the /y portion is
suppressed if the netmask specifies a single host.
The essential difference between the inet and cidr data types is that inet
accepts values with nonzero bits to the right of the netmask, whereas cidr
does not.

● macaddr
The macaddr type stores MAC addresses, known for example from Ethernet
card hardware addresses (although MAC addresses are used for other
purposes as well). Input is accepted in the following formats:
'08:00:2b:01:02:03'
'08-00-2b-01-02-03'
'08002b:010203'
'08002b-010203'
'0800.2b01.0203'
'08002b010203'

These examples specify the same address. Upper and lower cases are
accepted for the digits a through f. Output is always in the first of the forms
shown.

Bit String Types
Bit strings are strings of 1's and 0's. They can be used to store bit masks.

openGauss supports two bit string types: bit(n) and bit varying(n), in which n is a
positive integer.

The data of the bit type must match the length n exactly. An error will be
reported if shorter or longer bit strings are stored. The data of the bit varying
type is of variable length up to the maximum length n. Longer strings will be
rejected. Writing bit without a length is equivalent to bit(1), while bit varying
without a length limit means unlimited length.

NO TE

If one explicitly casts a bit-string value to bit(n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error.
Similarly, if one explicitly casts a bit-string value to bit varying(n), it will be truncated on
the right if it has more than n bits.

-- Create a table.
openGauss=# CREATE TABLE bit_type_t1
(
 BT_COL1 INTEGER,
 BT_COL2 BIT(3),
 BT_COL3 BIT VARYING(5)
) ;

-- Insert data.
openGauss=# INSERT INTO bit_type_t1 VALUES(1, B'101', B'00');

-- Specify the type length. An error is reported if an inserted string exceeds this length.

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 29

openGauss=# INSERT INTO bit_type_t1 VALUES(2, B'10', B'101');
ERROR: bit string length 2 does not match type bit(3)
CONTEXT: referenced column: bt_col2

-- Specify the type length. Data is converted if it exceeds this length.
openGauss=# INSERT INTO bit_type_t1 VALUES(2, B'10'::bit(3), B'101');

-- View data.
openGauss=# SELECT * FROM bit_type_t1;
 bt_col1 | bt_col2 | bt_col3
---------+---------+---------
 1 | 101 | 00
 2 | 100 | 101
(2 rows)

-- Delete the table.
openGauss=# DROP TABLE bit_type_t1;

Text Search Types
openGauss offers two data types that are designed to support full text search. The
tsvector type represents a document in a form optimized for text search. The
tsquery type similarly represents a text query.

● tsvector
The tsvector type represents a retrieval unit, usually a textual column within
a row of a database table, or a combination of such columns. A tsvector
value is a sorted list of distinct lexemes, which are words that have been
normalized to merge different variants of the same word. Sorting and
deduplication are done automatically during input. The to_tsvector function
is used to parse and normalize a document string.
A tsvector value is a sorted list of distinct lexemes, which are words that have
been formatted different entries. During segmentation, tsvector automatically
performs duplicate-elimination to the entries for input in a certain order.
Example:
openGauss=# SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
 tsvector
--
 'a' 'and' 'ate' 'cat' 'fat' 'mat' 'on' 'rat' 'sat'
(1 row)

It can be seen from the preceding example that tsvector segments a string by
spaces, and segmented lexemes are sorted based on their length and
alphabetical order. To represent lexemes containing whitespaces or
punctuations, surround them with quotation marks:
openGauss=# SELECT $$the lexeme ' ' contains spaces$$::tsvector;
 tsvector

 ' ' 'contains' 'lexeme' 'spaces' 'the'
(1 row)

Use double dollar signs ($$) to mark entries containing single quotation
marks ('').
openGauss=# SELECT $$the lexeme 'Joe''s' contains a quote$$::tsvector;
 tsvector
--
 'Joe''s' 'a' 'contains' 'lexeme' 'quote' 'the'
(1 row)

Optionally, integer positions can be attached to lexemes:
openGauss=# SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12'::tsvector;
 tsvector

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 30

 'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5 'rat':12 'sat':4
(1 row)

A position normally indicates the source word's location in the document.
Positional information can be used for proximity ranking. Position values
range from 1 to 16383. The maximum value is 16383. Duplicate positions for
the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can
be A, B, C, or D. D is the default and therefore is not shown in output.
openGauss=# SELECT 'a:1A fat:2B,4C cat:5D'::tsvector;
 tsvector

 'a':1A 'cat':5 'fat':2B,4C
(1 row)

Weights are typically used to reflect the document structure, for example, by
marking title words differently from body words. Text search ranking
functions can assign different priorities to the different weight markers.

The following example is the standard usage of the tsvector type. Example:
openGauss=# SELECT 'The Fat Rats'::tsvector;
 tsvector

 'Fat' 'Rats' 'The'
(1 row)

For most English-text-searching applications, the above words would be
considered non-normalized, which should usually be passed through
to_tsvector to normalize the words appropriately for searching:
openGauss=# SELECT to_tsvector('english', 'The Fat Rats');
 to_tsvector

 'fat':2 'rat':3
(1 row)

● tsquery

The tsquery type represents a retrieval condition. A tsquery value stores
lexemes that are to be searched for, and combines them honoring the
Boolean operators & (AND), | (OR), and ! (NOT). Parentheses can be used
to enforce grouping of the operators. The to_tsquery and plainto_tsquery
functions will normalize lexemes before the lexemes are converted to the
tsquery type.
openGauss=# SELECT 'fat & rat'::tsquery;
 tsquery

 'fat' & 'rat'
(1 row)

openGauss=# SELECT 'fat & (rat | cat)'::tsquery;
 tsquery

 'fat' & ('rat' | 'cat')
(1 row)

openGauss=# SELECT 'fat & rat & ! cat'::tsquery;
 tsquery

 'fat' & 'rat' & !'cat'
(1 row)

In the absence of parentheses, ! (NOT) binds most tightly, and & (AND)
binds more tightly than | (OR).

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 31

Lexemes in a tsquery can be labeled with one or more weight letters, which
restrict them to match only tsvector lexemes with matching weights:
openGauss=# SELECT 'fat:ab & cat'::tsquery;
 tsquery

 'fat':AB & 'cat'
(1 row)

Also, lexemes in a tsquery can be labeled with asterisks (*) to specify prefix
matching:
openGauss=# SELECT 'super:*'::tsquery;
 tsquery

 'super':*
(1 row)

This query will match any word in a tsvector that begins with "super".
Note that prefixes are first processed by text search configurations, which
means that the following example returns true:
openGauss=# SELECT to_tsvector('postgraduate') @@ to_tsquery('postgres:*') AS RESULT;
 result

 t
(1 row)

This is because postgres gets stemmed to postgr.
openGauss=# SELECT to_tsquery('postgres:*');
 to_tsquery

 'postgr':*
(1 row)

It then matches postgraduate.
'Fat:ab & Cats' is normalized to the tsquery type as follows:
openGauss=# SELECT to_tsquery('Fat:ab & Cats');
 to_tsquery

 'fat':AB & 'cat'
(1 row)

Universally Unique Identifier (UUID) Types
This data type stores universally unique identifiers defined by RFC 4122, ISO/IEF
9834-8:2005 and related standards. This identifier is a 128-bit quantity that is
generated by an algorithm chosen to make it very unlikely that the same identifier
will be generated by anyone else in the known universe using the same algorithm.

A UUID is written as a sequence of lower-case hexadecimal digits, in several
groups separated by hyphens, specifically a group of 8 digits followed by three
groups of 4 digits followed by a group of 12 digits, for a total of 32 digits
representing the 128 bits. An example of a UUID in this standard form is:

a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11

openGauss also accepts the following alternative forms for input: use of upper-
case letters and digits, standard format surrounded by braces, omitting some or all
hyphens, and adding a hyphen after any group of four digits. Example:

A0EEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11}
a0eebc999c0b4ef8bb6d6bb9bd380a11
a0ee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0a11

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 32

Output is always in the standard form.

JSON/JSONB Types

JavaScript Object Notation (JSON) data can be a single scalar, an array, or a key-
value pair object. The array and object can be called a container:

● Scalar: a number, Boolean, string, or null
● Array: defined in a pair of square brackets ([]), in which elements can be any

type of JSON data, and are not necessarily of the same type.
● Object: defined in a pair of braces ({}), in which objects are stored in the

format of key:value. Each key must be a string enclosed by a pair of double
quotation marks (""), and its value can be any type of JSON data. In case of
duplicate keys, the last key-value pair will be used.

openGauss supports two types JSON and JSONB to store JSON data. JSON is a
complete copy of the entered character string and is parsed when used. The
entered spaces, duplicate keys, and sequence are retained. JSONB parses the input
binary data. During parsing, JSONB deletes semantic-irrelevant details and
duplicate keys, and sorts key-values. Therefore, JSONB does not need to parse the
binary data again when it is used.

So you can see that both JSON and JSONB are of JSON data type, and the same
strings can be entered as input. The main difference between JSON and JSONB is
the efficiency. Because JSON data is an exact copy of the input text, the data must
be parsed on every execution; in contrast, JSONB data is stored in a decomposed
binary form and can be processed faster, though this makes it slightly slower in
input due to the conversion mechanism. In addition, because the JSONB data form
is unified, it better supports more powerful functions, for example, comparing
sizes according to a specific rule. JSONB also supports indexing, which is a
significant advantage.

● Input format
An input must be a JSON-compliant string, which is enclosed in single
quotation marks ('').
Null (null-json): Only null is supported, and all letters are in lowercase.
select 'null'::json; -- suc
select 'NULL'::jsonb; -- err

Number (num-json): The value can be a positive or negative integer, decimal
fraction, or 0. The scientific notation is supported.
select '1'::json;
select '-1.5'::json;
select '-1.5e-5'::jsonb, '-1.5e+2'::jsonb;
select '001'::json, '+15'::json, 'NaN'::json;
-- Redundant leading zeros, positive plus signs (+), NaN, and infinity are not supported.

Boolean (bool-json): The value can only be true or false in lowercase.
select 'true'::json;
select 'false'::jsonb;

String (str-json): The value must be a string enclosed in double quotation
marks ("").
select '"a"'::json;
select '"abc"'::jsonb;

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 33

Array (array-json): Arrays are enclosed in square brackets ([]). Elements in the
array can be any valid JSON data, and are unnecessarily of the same type.
select '[1, 2, "foo", null]'::json;
select '[]'::json;
select '[1, 2, "foo", null, [[]], {}]'::jsonb;

Object (object-json): The value is enclosed in braces ({}). The key must be a
JSON-compliant string, and the value can be any valid JSON string.
select '{}'::json;
select '{"a": 1, "b": {"a": 2, "b": null}}'::json;
select '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::jsonb;

CA UTION

● Note that 'null'::json and null::json are different, which are similar to the
strings str="" and str=null.

● For numbers, when scientific notation is used, JSONB expands them, while
JSON stores an exact copy of the input text.

● JSONB advanced features
– Precautions

▪ It does not support row-store tables.

▪ It cannot be used as a partition key.

▪ It does not support foreign tables and MOTs.

The main difference between JSON and JSONB lies in the storage mode.
JSONB stores parsed binary data, which reflects the JSON hierarchy and
facilitates direct access. Therefore, JSONB has many advanced features that
JSON does not have.
– Format normalization

▪ After the input object-json string is parsed into JSONB binary data,
semantically irrelevant details are naturally discarded, for example,
spaces.
openGauss=# select ' [1, " a ", {"a" :1 }] '::jsonb;
 jsonb

 [1, " a ", {"a": 1}]
(1 row)

▪ For object-json, duplicate key-values are deleted and only the last
key-value is retained. For example:
openGauss=# select '{"a" : 1, "a" : 2}'::jsonb;
 jsonb

 {"a": 2}
(1 row)

▪ For object-json, key-values will be re-sorted. The sorting rule is as
follows: 1. Longer key-values are sorted last. 2. If the key-values are
of the same length, the key-values with a larger ASCII code are
sorted after the key-values with a smaller ASCII code:
openGauss=# select '{"aa" : 1, "b" : 2, "a" : 3}'::jsonb;
 jsonb

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 34

 {"a": 3, "b": 2, "aa": 1}
(1 row)

– Size comparison
Format normalization ensures that only one form of JSONB data exists in
the same semantics. Therefore, sizes may be compared according to a
specific rule.

▪ First, compare the types: object-jsonb > array-jsonb > bool-jsonb >
num-jsonb > str-jsonb > null-jsonb.

▪ Compare the content if data types are the same:
○ str-json: The default text sorting rule of the database is used for

comparison. A positive value indicates greater than, a negative
value indicates less than, and 0 indicates equal.

○ num-json: numeric comparison
○ bool-json: true > false
○ array-jsonb: long elements > short elements. If the lengths are

the same, compare each element in sequence.
○ object-jsonb: If the length of a key-value pair is longer than that

of a short key-value pair, the key is compared first, and then the
value is compared.

CA UTION

For comparison within the object-jsonb type, the final result after
format sorting is used for comparison. Therefore, the comparison
result may not be intuitive compared with the direct input.

– Creating indexes, primary keys, and foreign keys

▪ B-tree index
B-tree indexes, primary keys, and foreign keys can be created for the
JSONB type.

▪ GIN index
GIN indexes can be used to effectively search for keys or key-value
pairs that appear in a large number of JSONB documents (datums).
Two GIN operator classes (jsonb_ops and jsonb_hash_ops) are
provided for different performance and flexibility choices. The default
GIN operator class supports @>, <@, ?, ?& and ?| operator query. The
non-default GIN operator class jsonb_path_ops supports only the
@> and <@ operators.

– Containment and existence
Querying whether a JSON contains some elements or whether some
elements exist in a JSON is an important capability of JSONB.
-- Simple scalar/primitive values contain only the identical value:
SELECT '"foo"'::jsonb @> '"foo"'::jsonb;
-- The array on the left contains the character string on the right.
SELECT '[1, "aa", 3]'::jsonb ? 'aa';
-- The array on the left contains all elements of the array on the right, regardless of the
sequence and repetition.

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 35

SELECT '[1, 2, 3]'::jsonb @> '[1, 3, 1]'::jsonb;
-- The object-json on the left contains all key-value pairs of object-json on the right.
SELECT '{"product": "PostgreSQL", "version": 9.4, "jsonb":true}'::jsonb @> '{"version":9.4}'::jsonb;
-- The array on the left does not contain all elements of the array on the right. The three
elements on the left are 1, 2, and [1,3], but the elements on the right are 1 and 3.
SELECT '[1, 2, [1, 3]]'::jsonb @> '[1, 3]'::jsonb; --false
-- Similarly, no containment relationship exists and false is returned.
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"bar": "baz"}'::jsonb; -- false

HyperLoglog (HLL) Types
HLL is an approximation algorithm for efficiently counting the number of distinct
values in a dataset. It features faster computing and lower space usage. You only
need to store HLL data structures, instead of data sets. When new data is added
to a dataset, make hash calculation on the data and insert the result to an HLL.
Then, you can obtain the final result based on the HLL.

Table 5-13 compares HLL with other algorithms.

Table 5-13 Comparison between HLL and other algorithms

Item Sorting
Algorithm

Hash Algorithm HLL

Time complexity O(nlogn) O(n) O(n)

Space complexity O(n) O(n) log(logn)

Error rate 0 0 ≈0.8%

Storage space
requirement

Size of original
data

Size of original
data

The maximum
size is 16 KB by
default.

HLL has advantages over others in the computing speed and storage space
requirement. In terms of time complexity, the sorting algorithm needs O(nlogn)
time for sorting, and the hash algorithm and HLL need O(n) time for full table
scanning. In terms of storage space requirements, the sorting algorithm and hash
algorithm need to store raw data before collecting statistics, whereas the HLL
algorithm needs to store only the HLL data structures rather than the raw data,
thereby occupying a fixed space of about 16 KB.

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 36

NO TICE

● In the current default specifications, the maximum number of distinct values
that can be calculated is about 1.1e + 15, and the error rate is 0.8%. If the
calculation result exceeds the maximum, the error rate of the calculation result
will increase, or the calculation will fail and an error will be reported.

● When using this feature for the first time, you need to evaluate the distinct
values of the service, properly select configuration parameters, and perform
verification to ensure that the accuracy meets requirements.
● By default, the distinct value is 1.1e + 15. If the distinct value is NaN, you

need to adjust log2m or use another algorithm to calculate the distinct
value.

● The hash algorithm has an extremely low probability of collision. However,
you are still advised to select 2 or 3 hash seeds for verification when using
the hash algorithm for the first time. If there is only a small difference
between the distinct values, you can select any one of the seeds as the
hash seed.

Table 5-14 describes main HLL data structures.

Table 5-14 Main HLL data structures

Data Type Function

hll The HLL header is a 27-byte field. By default, the data
length ranges from 0 KB to 16 KB. The distinct value can be
obtained.

When you create an HLL data type, 0 to 4 input parameters are supported. The
parameter meanings and specifications are the same as those of the hll_empty
function. The first parameter is log2m, indicating the logarithm of the number of
buckets, and its value ranges from 10 to 16. The second parameter is log2explicit,
indicating the threshold in explicit mode, and its value ranges from 0 to 12. The
third parameter is log2sparse, indicating the threshold of the Sparse mode, and
its value ranges from 0 to 14. The fourth parameter is duplicatecheck, indicating
whether to enable duplicate check, and its value ranges from 0 to 1. When the
input parameter is set to –1, the default value of the HLL parameter is used. You
can run the \d or \d+ command to view the parameters of the HLL type.

NO TE

When the HLL data type is created, the result varies depending on the input parameter
behavior:
● When creating an HLL type, do not set the input parameter or set it to –1. Use the

default value of the corresponding HLL parameter.
● If a valid value is set for the input parameter, the corresponding HLL parameter uses the

input value.
● If the input value is invalid, an error is reported when the HLL type is created.

-- Create an HLL table without specifying input parameters.
openGauss=# create table t1 (id integer, set hll);

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 37

openGauss=# \d t1
 Table "public.t1"
 Column | Type | Modifiers
--------+---------+-----------
 id | integer |
 set | hll |

-- Create an HLL table, specify the first two input parameters, and use the default values for the last two
input parameters.
openGauss=# create table t2 (id integer, set hll(12,4));
openGauss=# \d t2
 Table "public.t2"
 Column | Type | Modifiers
--------+----------------+-----------
 id | integer |
 set | hll(12,4,12,0) |

-- Create an HLL table, specify the third input parameter, and use default values for other parameters.
openGauss=# create table t3(id int, set hll(-1,-1,8,-1));
openGauss=# \d t3
 Table "public.t3"
 Column | Type | Modifiers
--------+----------------+-----------
 id | integer |
 set | hll(14,10,8,0) |

-- When a user creates an HLL table and specifies an invalid input parameter, an error is reported.
openGauss=# create table t4(id int, set hll(5,-1));
ERROR: log2m = 5 is out of range, it should be in range 10 to 16, or set -1 as default

NO TE

When inserting an HLL object to an HLL table, ensure that the parameters of the HLL type
are the same as those of the inserted object. Otherwise, an error is reported.

-- Create an HLL table.
openGauss=# create table t1(id integer, set hll(14));

-- Insert an HLL object to a table. The insertion succeeds because parameter types are consistent.
openGauss=# insert into t1 values (1, hll_empty(14,-1));

-- Insert an HLL object to a table. The insertion fails because parameter types are inconsistent.
openGauss=# insert into t1(id, set) values (1, hll_empty(14,5));
ERROR: log2explicit does not match: source is 5 and dest is 10

The following describes HLL application scenarios.

● Scenario 1: "Hello World"

The following example shows how to use the HLL data type:
-- Create a table with the HLL type.
openGauss=# create table helloworld (id integer, set hll);

-- Insert an empty HLL to the table.
openGauss=# insert into helloworld(id, set) values (1, hll_empty());

-- Add a hashed integer to the HLL.
openGauss=# update helloworld set set = hll_add(set, hll_hash_integer(12345)) where id = 1;

-- Add a hashed string to the HLL.
openGauss=# update helloworld set set = hll_add(set, hll_hash_text('hello world')) where id = 1;

-- Obtain the number of distinct values of the HLL.
openGauss=# select hll_cardinality(set) from helloworld where id = 1;
 hll_cardinality

 2
(1 row)

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 38

-- Delete the table.
openGauss=# drop table helloworld;

● Scenario 2: Collect statistics about website visitors.
The following example shows how an HLL collects statistics on the number of
users visiting a website within a period of time:
-- Create a raw data table to show that a user has visited the website at a certain time.
openGauss=# create table facts (
 date date,
 user_id integer
);

-- Create a raw data table to show that a user has visited the website at a certain time.
openGauss=# insert into facts values ('2019-02-20', generate_series(1,100));
openGauss=# insert into facts values ('2019-02-21', generate_series(1,200));
openGauss=# insert into facts values ('2019-02-22', generate_series(1,300));
openGauss=# insert into facts values ('2019-02-23', generate_series(1,400));
openGauss=# insert into facts values ('2019-02-24', generate_series(1,500));
openGauss=# insert into facts values ('2019-02-25', generate_series(1,600));
openGauss=# insert into facts values ('2019-02-26', generate_series(1,700));
openGauss=# insert into facts values ('2019-02-27', generate_series(1,800));

-- Create another table and specify an HLL column.
openGauss=# create table daily_uniques (
 date date UNIQUE,
 users hll
);

-- Group data by date and insert the data into the HLL.
openGauss=# insert into daily_uniques(date, users)
 select date, hll_add_agg(hll_hash_integer(user_id))
 from facts
 group by 1;

-- Calculate the numbers of users visiting the website every day.
openGauss=# select date, hll_cardinality(users) from daily_uniques order by date;
 date | hll_cardinality
------------+------------------
 2019-02-20 | 100
 2019-02-21 | 200.217913059312
 2019-02-22 | 301.76494508014
 2019-02-23 | 400.862858326446
 2019-02-24 | 502.626933349694
 2019-02-25 | 601.922606454213
 2019-02-26 | 696.602316769498
 2019-02-27 | 798.111731634412
(8 rows)

-- Calculate the number of users who had visited the website in the week from February 20, 2019 to
February 26, 2019.
openGauss=# select hll_cardinality(hll_union_agg(users)) from daily_uniques where date >=
'2019-02-20'::date and date <= '2019-02-26'::date;
 hll_cardinality

 696.602316769498
(1 row)

-- Calculate the number of users who visited the website yesterday but have not visited the website
today.
openGauss=# SELECT date, (#hll_union_agg(users) OVER two_days) - #users AS lost_uniques FROM
daily_uniques WINDOW two_days AS (ORDER BY date ASC ROWS 1
PRECEDING);
 date | lost_uniques
------------+--------------
 2019-02-20 | 0
 2019-02-21 | 0
 2019-02-22 | 0
 2019-02-23 | 0
 2019-02-24 | 0

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 39

 2019-02-25 | 0
 2019-02-26 | 0
 2019-02-27 | 0
(8 rows)

-- Delete the table.
openGauss=# drop table facts;
openGauss=# drop table daily_uniques;

● Scenario 3: The data to be inserted does not meet the requirements of the
HLL data structure.
When inserting data into a column of the HLL type, ensure that the data
meets the requirements of the HLL data structure. If the data does not meet
the requirements after being parsed, an error will be reported. In the
following example, E\\1234 to be inserted does not meet the requirements of
the HLL data structure after being parsed. As a result, an error is reported.
openGauss=# create table test(id integer, set hll);
openGauss=# insert into test values(1, 'E\\1234');
ERROR: not a hll type, size=6 is not enough
openGauss=# drop table test;

Range Types

A range type is a data type that represents the range of a value of an element
type (called the subtype of a range). For example, the range of timestamp may be
used to express a time range in which a conference room is reserved. In this case,
the data type is tsrange and timestamp is the subtype. The subtype must have an
overall order so that the element value can be clearly specified within, before, or
after a range.

Range types are useful because they can express multiple element values in a
single range value and can clearly express concepts such as range overlapping. The
time and date range used for scheduling is a good example, and the price range
and the range of an instrument are also examples of range type.

● Built-in ranges
The following built-in ranges are available:
– int4range: integer range
– int8range: bigint range
– numrange: numeric range
– tsrange: range of timestamp without the time zone
– tstzrange: range of timestamp with the time zone
– daterange: date range

● Including and excluding bounds
Each non-empty range has two bounds, a lower bound and an upper bound.
All values between the upper and lower bounds are included in the range. An
inclusion bound means that the bound value itself is included in the range,
while an exclusion bound means that the bound value is not included in the
range.
In a textual form of a range, the inclusion lower bound is expressed as "[" and
an exclusion lower bound is expressed as "(". Similarly, one containing the
upper bound is expressed as "]" and one excluding the upper bound is
expressed as ")".

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 40

The lower_inc and upper_inc functions test the upper and lower bounds of a
range value, respectively.

● Infinite (Unbounded) range
When the lower bound of a range is unbounded, it means that all values less
than the upper bound are included in the range, for example, (,3], indicating
all values less than the upper bound 3 are included in the range. Similarly,
when the upper bound of a range is unbounded, all values greater than the
upper bound are included in the range. When both the upper and lower
bounds are unbounded, all values of the element type are considered within
the range. The missing bounds are automatically converted to exclusions, for
example, [,] is converted to (,). You can consider these missing values as
positive infinity or negative infinity, but they are special range type values and
are considered to be positive and negative infinity values that go beyond any
range element type.
Element types with the infinity values can be used as explicit bound values.
For example, in the timestamp range, [today, infinity) does not include a
special timestamp value infinity.
The lower_inf and upper_inf functions test the infinite upper and lower
bounds of a range, respectively.

● Range input/output
The input of a range value must follow one of the following formats:
(lower-bound, upper-bound)
(lower-bound, upper-bound]
[lower-bound, upper-bound)
[lower-bound, upper-bound]
Empty

Parentheses () or square brackets [] indicate whether the upper and lower
bounds are excluded or included. Note that the last format is empty, which
represents an empty range (a range that does not contain values).
The value of lower-bound can be a valid input character string of the subtype
or null, indicating that there is no lower bound. Similarly, upper-bound can be
a valid input character string of the subtype or null, indicating that there is no
upper bound.
Each bound value can be referenced using the quotation marks(""). This is
necessary if the bounds value contains parentheses (), square brackets [],
commas (,), quotation marks (""), or backslashes (\), because otherwise those
characters will be considered part of the range syntax. To put the quotation
mark or backslash in a referenced bound value, put a backslash in front of it
(and a pair of double quotation marks in its referenced bound value
represents one quotation mark, which is similar to the single quotation mark
rule in SQL character strings). In addition, you can avoid referencing and use
backslash escapes to protect all data characters; otherwise they will be used
as part of the return syntax. Also, if you want to write a bound value that is
an empty string, write "", indicating infinite bounds.
Spaces are allowed before and after a range value, but any space between
parentheses() or square brackets[] is used as part of the upper or lower
bound value (depending on the element type, the space may or may not
represent a value).
Examples:
-- 3 is included, 7 is not included, and all values between 3 and 7 are included.
SELECT '[3,7)'::int4range;

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 41

-- Neither 3 nor 7 is included, but all values between them are included.
SELECT '(3,7)'::int4range;
-- Only 4 is included.
SELECT '[4,4]'::int4range;
-- Exclude any value (and will be normalized to empty)
SELECT '[4,4)'::int4range;

● Constructing range

Each range type has a constructor function with the same name. Using
constructor functions is often more convenient than writing a range literal
constant because it avoids extra references to bound values. Constructor
functions accept two or three parameters. Two parameters form a range in
the standard form, where the lower bound is included and the upper bound is
excluded, and three parameters form a range according to the bound
specified by the third parameter. The third parameter must be one of the
following character strings: (), (], [], or []. For example:
-- The complete form is: lower bound, upper bound, and textual parameters indicating the inclusion/
exclusion of bounds.
SELECT numrange(1.0, 14.0, '(]');
-- If the third parameter is omitted, it is assumed to be '[)'.
SELECT numrange(1.0, 14.0);
-- Although '(]' is specified here, the value will be converted to the standard format when displayed,
because int8range is a discrete range type (see below).
SELECT int8range(1, 14, '(]');
-- Using NULL for a bound causes the range to be unbounded on that side.
SELECT numrange(NULL, 2.2);

● Discrete range

A range element type has a well-defined "step" such as integer or date. In
these types, if there is no valid value between two elements, they can be said
to be adjacent. This is in contrast to a continuous range in which other
element values can always be identified between two given values. For
example, a range above the numeric type is continuous, and the range of
timestamp is also continuous. (Although timestamp has limited precision and
can be considered as discrete in theory, it is better to consider it as continuous
because the step is not normally considered.)

Another way to consider discrete range types is to have a clear "next" or
"previous" value for each element value. With this idea in mind, you can
switch between inclusion and exclusion expressions of a range bound by
replacing it with the original given next or previous element value. For
example, in the integer range type, [4,8] and (3,9) represent the same set of
values, but not for numeric ranges.

A discrete range type should have a regularization function that knows the
expected step size of the element type. The regularization function can
convert the equivalents of the range type to the same expression, in particular
consistent with the inclusion or exclusion bounds. If you do not specify a
regularization function, ranges with different formats will always be
considered as unequal, even if they actually express the same set of values.

The built-in range types int4range, int8range, and daterange use a regularized
form that includes the lower bound and excludes the upper bound, that is, [).
However, user-defined range types can use other conventions.

● Defining a new nange

Users can define their own range types. A common reason is to use the range
on the subtype that is not provided in the built-in range type. For example, to
create the range type subtype float8, run the following command:

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 42

CREATE TYPE floatrange AS RANGE (
 subtype = float8,
 subtype_diff = float8mi
);
SELECT '[1.234, 5.678]'::floatrange;

Because float8 does not have a meaningful "step", we did not define a
regularization function in this example.

Defining your own range type also allows you to specify a different subtype
B-tree operator class or collection to change the sort order to determine
which values fall within the given range.

If the subtype is considered to have a discrete value instead of a continuous
value, the CREATE TYPE command should specify a canonical function. The
regularization function receives an input range value and must return an
equivalent range value that may have different bounds and formats. For two
ranges, for example, [1, 7] and [1, 8) that represent the same value set, the
output must be the same. There is no relationship between choosing which
expression to use as the regularization function, as long as two values of
equal values in different formats can always be mapped to the same value in
the same format. In addition to adjusting the inclusion/exclusion bound
format, if the expected compensation is larger than the subtype can store, a
regularization function may round the bound value. For example, a range
type above a timestamp might be defined as having a one-hour epoch, so the
regularization function might need to round off bounds that are not multiples
of an hour, or might throw an error directly.

In addition, any range type intended to be used with a GiST or SP-GiST index
should define a subtype difference or subtype_diff function (the index can still
work without subtype_diff, but may be less efficient than when a difference
function is provided). The subtype difference function uses two subtype input
values and returns a difference expressed as a float8 value (X minus Y). In the
example above, we can use functions under the regular float8 subtraction
operator. However, for any other subtype, some type conversion may be
required. There may also be a need for innovative ideas on how to express
differences as numbers. For maximum extensibility, the subtype_diff function
should agree with the sort order of the selected operator class and sort rules.
That is, if the first parameter of the sort order is greater than the second
parameter, the result should be a positive value.

The following is an example of a less simplified subtype_diff function:
CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS 'SELECT EXTRACT(EPOCH
FROM (x - y))' LANGUAGE sql STRICT IMMUTABLE;
CREATE TYPE timerange AS RANGE (
 subtype = time,
 subtype_diff = time_subtype_diff
);
SELECT '[11:10, 23:00]'::timerange;

Indexes

GiST and SP-GiST indexes can be created for table columns of the range type. For
example, to create a GiST index, run the following command:

CREATE INDEX reservation_idx ON reservation USING GIST (during);

A GiST or SP-GiST index can accelerate queries involving the following range
operators: =, &&, <@, @>, <<, >>, -|-, &<, and &>.

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 43

In addition, the B-tree and hash index can be created on table columns of the
range type. For these index types, basically the only useful range operation is
equivalence. Using the corresponding < and > operators, there is a B-tree sort oder
for range value definitions, but that order is fairly arbitrary and is often less useful
in the reality. The B-tree and hash support for range types is primarily designed to
allow sorting and hashing within a query, rather than creating an index.

OID Types
OIDs are used internally by openGauss as primary keys for various system
catalogs. OIDs are not added to user-created tables by the system. The OID type
represents an object identifier.

The OID type is currently implemented as an unsigned four-byte integer. So, using
a user-created table's OID column as a primary key is discouraged.

Table 5-15 OID types

Name Referenc
e

Description Example

OID N/A Numeric object identifier 564182

CID N/A Command identifier. This is
the data type of the system
columns cmin and cmax.
Command identifiers are
32-bit quantities.

N/A

XID N/A Transaction identifier. This is
the data type of the system
columns xmin and xmax.
Transaction identifiers are
also 64-bit quantities.

N/A

TID N/A Row identifier. This is the
data type of the system
column ctid. A row ID is a
pair (block number, tuple
index within block) that
identifies the physical
location of the row within
its table.

N/A

REGCONFI
G

pg_ts_conf
ig

Text search configuration english

REGDICTIO
NARY

pg_ts_dict Text search dictionary simple

REGOPER pg_operat
or

Operator name N/A

REGOPERA
TOR

pg_operat
or

Operator with parameter
types

*(integer,integer) or -
(NONE,integer)

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 44

Name Referenc
e

Description Example

REGPROC pg_proc Function name sum

REGPROCE
DURE

pg_proc Function with parameter
types

sum(int4)

REGCLASS pg_class Relationship name pg_type

REGTYPE pg_type Data type name integer

The OID type is used for a column in the database system catalog.

Example:

openGauss=# SELECT oid FROM pg_class WHERE relname = 'pg_type';
 oid

 1247
(1 row)

The alias type of the OID is REGCLASS which allows simplified search for OID
values.

Example:

openGauss=# SELECT attrelid,attname,atttypid,attstattarget FROM pg_attribute WHERE attrelid =
'pg_type'::REGCLASS;
 attrelid | attname | atttypid | attstattarget
----------+------------+----------+---------------
 1247 | xc_node_id | 23 | 0
 1247 | tableoid | 26 | 0
 1247 | cmax | 29 | 0
 1247 | xmax | 28 | 0
 1247 | cmin | 29 | 0
 1247 | xmin | 28 | 0
 1247 | oid | 26 | 0
 1247 | ctid | 27 | 0
 1247 | typname | 19 | -1
 1247 | typnamespace | 26 | -1
 1247 | typowner | 26 | -1
 1247 | typlen | 21 | -1
 1247 | typbyval | 16 | -1
 1247 | typtype | 18 | -1
 1247 | typcategory | 18 | -1
 1247 | typispreferred | 16 | -1
 1247 | typisdefined | 16 | -1
 1247 | typdelim | 18 | -1
 1247 | typrelid | 26 | -1
 1247 | typelem | 26 | -1
 1247 | typarray | 26 | -1
 1247 | typinput | 24 | -1
 1247 | typoutput | 24 | -1
 1247 | typreceive | 24 | -1
 1247 | typsend | 24 | -1
 1247 | typmodin | 24 | -1
 1247 | typmodout | 24 | -1
 1247 | typanalyze | 24 | -1
 1247 | typalign | 18 | -1
 1247 | typstorage | 18 | -1
 1247 | typnotnull | 16 | -1
 1247 | typbasetype | 26 | -1
 1247 | typtypmod | 23 | -1

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 45

 1247 | typndims | 23 | -1
 1247 | typcollation | 26 | -1
 1247 | typdefaultbin | 194 | -1
 1247 | typdefault | 25 | -1
 1247 | typacl | 1034 | -1
(38 rows)

Pseudo-Types
openGauss type system contains a number of special-purpose entries that are
collectively called pseudo-types. A pseudo-type cannot be used as a column data
type, but it can be used to declare a function's argument or result type.

Each of the available pseudo-types is useful in situations where a function's
behavior does not correspond to simply taking or returning a value of a specific
SQL data type. Table 5-16 lists all pseudo-types.

Table 5-16 Pseudo-types

Name Description

any Indicates that a function accepts any input data type.

anyelement Indicates that a function accepts any data type.

anyarray Indicates that a function accepts any array data type.

anynonarray Indicates that a function accepts any non-array data type.

anyenum Indicates that a function accepts any enum data type.

anyrange Indicates that a function accepts any range data type.

cstring Indicates that a function accepts or returns a null-
terminated C string.

internal Indicates that a function accepts or returns a server-
internal data type.

language_handler Indicates that a procedural language call handler is
declared to return language_handler.

fdw_handler Indicates that a foreign-data wrapper handler is declared
to return fdw_handler.

record Identifies a function returning an unspecified row type.

trigger Indicates that a trigger function is declared to return
trigger.

void Indicates that a function returns no value.

opaque Indicates an obsolete type name that formerly served all
the above purposes.

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 46

Functions coded in C (whether built in or dynamically loaded) can be declared to
accept or return any of these pseudo-types. It is up to the user to ensure that the
function will behave safely when a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by
their implementation languages. At present, the procedural languages all forbid
use of a pseudo-type as argument type, and allow only void and record as a
result type. Some also support polymorphic functions using the anyelement,
anyarray, anynonarray, anyenum, and anyrange types.

The internal pseudo-type is used to declare functions that are meant only to be
called internally by the database system, and not by direct invocation in an SQL
query. If a function has at least one internal-type argument then it cannot be
called from SQL. You are advised not to create any function that is declared to
return internal unless it has at least one internal argument.

Example:

-- Create a table.
openGauss=# create table t1 (a int);

-- Insert two data records.
openGauss=# insert into t1 values(1),(2);

-- Create the showall() function.
openGauss=# CREATE OR REPLACE FUNCTION showall() RETURNS SETOF record
AS $$ SELECT count(*) from t1; $$
LANGUAGE SQL;

-- Call the showall() function.
openGauss=# SELECT showall();
 showall

 (2)
(1 row)

-- Delete the function.
openGauss=# DROP FUNCTION showall();

-- Delete the table.
openGauss=# drop table t1;

Data Types Supported by Column-store Tables
Table 5-17 lists the data types supported by column-store tables.

Table 5-17 Data types supported by column-store tables

Category Data Type Length Suppo
rted or
Not

Numeric types smallint 2 Suppor
ted

integer 4 Suppor
ted

bigint 8 Suppor
ted

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 47

Category Data Type Length Suppo
rted or
Not

decimal –1 Suppor
ted

numeric –1 Suppor
ted

real 4 Suppor
ted

double precision 8 Suppor
ted

smallserial 2 Suppor
ted

serial 4 Suppor
ted

bigserial 8 Suppor
ted

largeserial –1 Suppor
ted

Monetary
types

money 8 Suppor
ted

Character
types

character varying(n), varchar(n) –1 Suppor
ted

character(n), char(n) n Suppor
ted

character, char 1 Suppor
ted

text –1 Suppor
ted

nvarchar2 –1 Suppor
ted

name 64 Not
suppor
ted

Date/Time
types

timestamp with time zone 8 Suppor
ted

timestamp without time zone 8 Suppor
ted

date 4 Suppor
ted

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 48

Category Data Type Length Suppo
rted or
Not

time without time zone 8 Suppor
ted

time with time zone 12 Suppor
ted

interval 16 Suppor
ted

Big objects clob –1 Suppor
ted

blob –1 Not
suppor
ted

Other types Not
suppor
ted

XML Types
openGauss supports the XML types. The following is an example:

openGauss= CREATE TABLE xmltest (id int, data xml);
openGauss= INSERT INTO xmltest VALUES (1, 'one');
openGauss= INSERT INTO xmltest VALUES (2, 'two');
openGauss= SELECT * FROM xmltest ORDER BY 1;
 id | data
----+--------------------
1 | one
2 | two
(2 rows)
openGauss= SELECT xmlconcat('', NULL, '');
xmlconcat
(1 row)
openGauss= SELECT xmlconcat('', NULL, '');
xmlconcat
(1 row)

NO TE

● This function is disabled by default. To use this function, you need to use the build.sh
script to compile the database again and add the --with-libxml parameter to the ./
configure configuration parameter.

● Before compilation, you need to run the yum install -y libxml2-devel command.
Otherwise, the "configure: error: library 'xml2' (version >= 2.6.23) is required for XML
support" error will be reported.

● Before compilation, you need to add the dependencyoperating system environment/
libobs/comm/lib in the binary file of the third-party library to the system environment
variable LD_LIBRARY_PATH. Otherwise, an error message is displayed, indicating that
libiconv.so does not exist.

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 49

Data Types Used by the Ledger Database
The ledger database uses the hash16 data type to store row-level hash digests or
table-level hash digests, and uses the hash32 data type to store global hash
digests or history table verification hashes.

Table 5-18 Hash types used by the ledger database

Name Description Stora
ge
Space

Value Range

HASH1
6

Stored as an unsigned
64-bit integer

8
bytes

0 to +18446744073709551615

HASH3
2

Stored as a group of
16 unsigned integer
elements

16
bytes

Value range of an unsigned integer
array of 16 elements

The hash16 data type is used to store row-level or table-level hash digests in the
ledger database. After obtaining the hash sequence of a 16-character hexadecimal
string, the system calls the hash16in function to convert the sequence into an
unsigned 64-bit integer and stores the integer in a hash16 variable. For example:

Hexadecimal string: e697da2eaa3a775b; 64-bit unsigned integer: 16615989244166043483
Hexadecimal string: ffffffffffffffff; 64-bit unsigned integer: 18446744073709551615

The hash32 data type is used to store the global hash digest or history table
verification hash in the ledger database. After obtaining the hash sequence of a
32-character hexadecimal string, the systemcalls the hash32in function to convert
the sequence to an array containing 16 unsigned integer elements. For example:

Hexadecimal string: 685847ed1fe38e18f6b0e2b18c00edee
Hash32 array: [104,88,71,237,31,227,142,24,246,176,226,177,140,0,237,238]

openGauss
Tutoria 5 Data Types

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 50

6 Simple Data Management

6.1 Creating a Database

6.2 Creating a Table

6.3 INSERT INTO Statement

6.4 UPDATE Statement

6.5 DELETE Statement

6.6 Viewing Objects

6.7 SELECT Statement

6.8 Operators

6.9 Expressions

6.10 WHERE Clause

6.11 ORDER BY Clause

6.12 DISTINCT

6.13 GROUP BY Clause

6.14 HAVING Clause

6.15 Date/Time Functions and Operators

6.16 Mode Matching Operators

6.17 Aggregate Functions

6.1 Creating a Database
After the database is installed, a database named postgres is generated by
default. You need to create your own database.

Syntax
● Create a database.

CREATE DATABASE database_name;

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 51

● View the database.
– Run \l to view the existing database.

\l

– Run \c + Database name to access the existing database.
\c dbname

● Modify the database.
ALTER DATABASE database_name RENAME TO new_name;

● Delete the database.
DROP DATABASE database_name ;

Parameter Description
● database_name

Specifies the name of the database to be created, modified, or deleted.
● new_name

Specifies the new name of a database.

Examples
● Create the db_tpcc database.

openGauss=# CREATE DATABASE db_tpcc;
CREATE DATABASE

● Run \l to view the existing database.
openGauss=# \l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+-------+-----------+---------+-------+-------------------
 db_tpcc | omm | SQL_ASCII | C | C |
 mydb | omm | GBK | C | C |
 postgres | omm | SQL_ASCII | C | C |
 template0 | omm | SQL_ASCII | C | C | =c/omm +
 | | | | | omm=CTc/omm
 template1 | omm | SQL_ASCII | C | C | =c/omm +
 | | | | | omm=CTc/omm
(5 rows)

● Create a database (this does not mean that the database is used). You need
to specify that the created database is used. Run \c + Database name to
access the db_tpcc database.
openGauss=# \c db_tpcc
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db_tpcc" as user "omm".
db_tpcc=#

● Switch to the postgres database.
db_tpcc=# \c postgres

● Change the db_tpcc database name to tpcc.
openGauss=# ALTER DATABASE db_tpcc RENAME TO tpcc;
ALTER DATABASE

● Delete the tpcc database.
openGauss=# DROP DATABASE tpcc;
DROP DATABASE

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 52

6.2 Creating a Table
Create an empty table in the current database. The table will be owned by the
creator. The same table can be stored in different databases. You can execute the
CREATE TABLE statement to create a table.

Syntax
CREATE TABLE table_name
 (column_name data_type [, ...]);

Parameter Description
● table_name

Specifies the name of the table to be created.
● column_name

Specifies the name of the column to be created in the new table.
● data_type

Specifies the data type of the column.

Examples

Run the following commands to create a table named customer_t1. The table
columns are c_customer_sk, c_customer_id, c_first_name, and c_last_name. The
data types of the table columns are integer, char (5), char (6), and char (8),
respectively.

openGauss=# CREATE TABLE customer_t1
(
 c_customer_sk integer,
 c_customer_id char(5),
 c_first_name char(6),
 c_last_name char(8),
 Amount integer
);

If the following information is displayed, the table has been created:

 CREATE TABLE

6.3 INSERT INTO Statement
A new table contains no data. You need to insert data to the table before using it.
You can execute the INSERT INTO statement to insert data into the table. This
statement can be used to insert a row of data or multiple rows of data at the
same time.

Syntax
INSERT INTO table_name [(column_name [, ...])]
 { DEFAULT VALUES
 | VALUES {({ expression | DEFAULT } [, ...]) }[, ...] };

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 53

Parameter Description
● table_name

Specifies the name of the target table where data will be inserted.
Value range: an existing table name

● column_name
Specifies the name of a column in the target table.
– The column name can be qualified with a subcolumn name or an array

subscript, if needed.
– Each column not present in the column list will be filled with a default

value, either its declared default value or NULL if there is none. Inserting
data into only some columns of a composite type leaves the other
columns NULL.

– The target column names (specified by column_name) can be listed in
any order. If no list of column names is given at all, the default is all the
columns of the table in their declared order.

– The target columns are the first N column names, if there are only N
columns provided by the value clause.

– The values provided by the value clause are associated with the
corresponding columns from left to right in the table.

Value range: an existing column
● expression

Specifies an expression or a value to assign to the corresponding column.
– If single-quotation marks are inserted in a column, the single-quotation

marks need to be used for escape.
– If the expression for any column is not of the correct data type,

automatic type conversion will be attempted. If the attempt fails, data
insertion fails, and the system returns an error message.

● DEFAULT
Specifies the default value of a column. The value is NULL if no specified
default value has been assigned to it.

Examples
● Insert a row of data into the customer_t1 table.

Data values are arranged in the same order as the columns in the table and
are separated by commas (,). Generally, column values are text values
(constants), but they can also be scalar expressions.
openGauss=# INSERT INTO customer_t1(c_customer_sk, c_customer_id, c_first_name,Amount)
VALUES (3769, 'hello', 'Grace', 1000);
INSERT 0 1

If you know the sequence of the columns in the table, you can obtain the
same result without listing these columns. For example, the following
command generates the same result as the preceding command:
openGauss=# INSERT INTO customer_t1 VALUES (3769, 'hello', 'Grace',DEFAULT,1000);
INSERT 0 1

If you do not know some of the column values, you can omit them. If no
value is specified for a column, the column is set to the default value.
Example:

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 54

openGauss=# INSERT INTO customer_t1 (c_customer_sk, c_first_name) VALUES (3769, 'Grace');
INSERT 0 1
Equivalent to
openGauss=# INSERT INTO customer_t1 VALUES (3769, 'hello');
INSERT 0 1

You can also specify the default value of a column or row.
openGauss=# INSERT INTO customer_t1 (c_customer_sk, c_customer_id, c_first_name) VALUES (3769,
'hello', DEFAULT);
INSERT 0 1
openGauss=# INSERT INTO customer_t1 DEFAULT VALUES;
INSERT 0 1

● To insert multiple rows of data into a table, run the following command:
openGauss=# INSERT INTO customer_t1 (c_customer_sk, c_customer_id, c_first_name,Amount)
VALUES
 (6885, 'maps', 'Joes',2200),
 (4321, 'tpcds', 'Lily',3000),
 (9527, 'world', 'James',5000);
INSERT 0 3

You can also insert multiple rows of data by running the command for
inserting one row of data for multiple times. However, you are advised to run
this command to improve efficiency.

6.4 UPDATE Statement
Existing data in a database can be updated. You can update one row, all rows, or
specified rows of data, or update data in a single column without affecting the
data in the other columns. The UPDATE statement changes the values of the
specified columns in all rows that satisfy the condition. The WHERE clause
clarifies conditions. The columns to be modified need to be mentioned in the SET
clause; columns not explicitly modified retain their previous values.

Syntax
UPDATE table_name
SET column_name = { expression | DEFAULT }
[WHERE condition];

Parameter Description
● table_name

Specifies the name (optionally schema-qualified) of the table to be updated.
For example, myshcema.table.

Value range: an existing table name

● expression

Specifies the expression or value to be assigned to a column.

● column_name

Specifies the name of the column to be modified.

Value range: an existing column name

● condition

Specifies an expression that returns a value of Boolean type. Only rows for
which this expression returns true are updated.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 55

Examples

Run the following command to change the value of c_customer_sk in the
customer_t1 table from 9527 to 9876:

openGauss=# UPDATE customer_t1 SET c_customer_sk = 9876 WHERE c_customer_sk = 9527;
UPDATE 1

You can use a schema to modify the table name. If no such modifier is specified,
the table is located based on the default schema path. In the statement, SET is
followed by the target column and the new column value. The new column value
can be a constant or an expression.

For example, run the following statement to increase all the values in the
c_customer_sk column by 100:

openGauss=# UPDATE customer_t1 SET c_customer_sk = c_customer_sk + 100;
UPDATE 9

This statement does not include the WHERE clause, so all rows are updated. If the
statement includes the WHERE clause, only the rows matching the clause are
updated.

In the SET clause, the equal sign (=) indicates value setting. In the WHERE clause,
the equal sign indicates comparison. WHERE may not represent an equation and
can be replaced by other operators.

You can run an UPDATE statement to update multiple columns by specifying
multiple values in the SET clause. For example:

openGauss=# UPDATE customer_t1 SET c_customer_id = 'Admin', c_first_name = 'Local' WHERE
c_customer_sk = 4421;
UPDATE 1

6.5 DELETE Statement
The DELETE statement can be executed to delete rows that satisfy the WHERE
clause from a specified table. If the WHERE clause does not exist, all rows in the
table will be deleted and only the table structure is retained.

Syntax
DELETE FROM table_name
 [WHERE condition];

Parameter Description
● table_name

Specifies the name (optionally schema-qualified) of the target table.

Value range: an existing table name

● condition

Specifies an expression that returns a Boolean value. Only rows for which this
expression returns true will be deleted.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 56

Examples
Create the customer_t1_bak table whose structure and data are the same as
those of the customer_t1 table.

openGauss=# CREATE TABLE customer_t1_bak AS TABLE customer_t1;
INSERT 0 9

The customer_t1_bak table is created, and the data in the table is as follows:

openGauss=# SELECT * FROM customer_t1_bak;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
 3869 | hello | | |
 | | | |
 6985 | maps | Joes | | 2200
 9976 | world | James | | 5000
 4421 | Admin | Local | | 3000
(9 rows)

Run the following statement to delete the employee whose c_customer_sk is set
to 3869 from the customer_t1_bak table:

openGauss=# DELETE FROM customer_t1_bak WHERE c_customer_sk = 3869;
DELETE 5

The following information is displayed, indicating that the row where
c_customer_sk is set to 3869 has been deleted.

openGauss=# SELECT * FROM customer_t1_bak;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 | | | |
 6985 | maps | Joes | | 2200
 9976 | world | James | | 5000
 4421 | Admin | Local | | 3000
(4 rows)

If the WHERE statement is not specified, the data of the entire table is deleted by
default, and only the table structure is retained.

openGauss=# DELETE FROM customer_t1_bak;
DELETE 4

The result is as follows:

openGauss=# SELECT * FROM customer_t1_bak;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
(0 rows)

6.6 Viewing Objects
gsql provides several advanced features to facilitate user operations. The common
usage is as follows:

● Query the command help information.
\h [NAME]

For example, query all syntaxes of the ABORT statement.
openGauss=# \h ABORT
Command: ABORT

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 57

Description: abort the current transaction
Syntax:
ABORT [WORK | TRANSACTION] ;

● Switch databases.
\c dbname

For example, switch the postgres database to the dp_tpcc database.
openGauss=# \c db_tpcc
Non-SSL connection (SSL connection is recommended when requiring high-security)
You are now connected to database "db_tpcc" as user "omm".
db_tpcc=#

● Query all databases.
\l

The following is an example:
openGauss=# \l
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------+-------+-----------+---------+-------+-------------------
 mydb | omm | GBK | C | C |
 postgres | omm | SQL_ASCII | C | C |
 template0 | omm | SQL_ASCII | C | C | =c/omm +
 | | | | | omm=CTc/omm
 template1 | omm | SQL_ASCII | C | C | =c/omm +
 | | | | | omm=CTc/omm
(4 rows)

● Query all tables in the current database.
\dt

The following is an example:
openGauss=# \dt
 List of relations
 Schema | Name | Type | Owner | Storage
--------+-----------------+-------+-------+----------------------------------
 public | customer_t1 | table | omm | {orientation=row,compression=no}
 public | customer_t1_bak | table | omm | {orientation=row,compression=no}
(2 rows)

● View a table structure.
\d tablename

For example, view the structure of the customer_t1 table.
openGauss=# \d customer_t1
 Table "public.customer_t1"
 Column | Type | Modifiers
---------------+--------------+-----------
 c_customer_sk | integer |
 c_customer_id | character(5) |
 c_first_name | character(6) |
 c_last_name | character(8) |
 amount | integer |

6.7 SELECT Statement
The SELECT statement can be executed to retrieve data from a table or view. The
result is stored in a result table, which is called a result set.

Serving as an overlaid filter for a database table, the SELECT statement filters
required data from the table using SQL keywords.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 58

Syntax
SELECT
{ * | [column, ...] }
[FROM from_item [, ...]];

Parameter Description
● SELECT list

Specifies the name of a column in the table to be queried. The value can be a
part of the column name or all of the column names. The wildcard (*) is used
to represent all column names.
Column names can be expressed in the following formats:
– Manually input column names which are separated by commas (,)
– Columns computed in the FROM clause

● FROM clause
Specifies one or more source tables for the SELECT statement. The FROM
clause involves multiple elements. The common elements are as follows:
– table_name

Specifies the name of a table or view. The schema name can be added
before the table name or view name, for example,
schema_name.table_name. The table name is the most common element.

– subquery
Performs a subquery in the FROM clause. A temporary table is created to
save subquery results. For details, see 7.20 Subqueries.

– alias
Gives a temporary alias to a table to facilitate the reference by other
queries. For details, see 7.5 Aliases.

– join_type
There are five types. For details, see 7.2 JOIN.

Examples
● Read all data from the customer_t1 table.

openGauss=# SELECT * FROM customer_t1;
c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
 3869 | hello | | |
 | | | |
 6985 | maps | Joes | | 2200
 9976 | world | James | | 5000
 4421 | Admin | Local | | 3000
(9 rows)

● Read the c_customer_sk and c_customer_id columns from the customer_t1
table.
openGauss=# SELECT c_customer_sk,c_customer_id FROM customer_t1;
c_customer_sk | c_customer_id
---------------+---------------
 3869 | hello
 3869 | hello

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 59

 3869 |
 3869 | hello
 3869 | hello
 |
 6985 | maps
 9976 | world
 4421 | Admin
(9 rows)

6.8 Operators
An operator in openGauss is a reserved keyword or character, and it is generally
used in the WHERE statement as a filter condition. Common operators are as
follows:

Arithmetic Operators
● +

Description: Addition
Example:
openGauss=# SELECT 2+3 AS RESULT;
 result

 5
(1 row)

● -
Description: Subtraction
Example:
openGauss=# SELECT 2-3 AS RESULT;
 result

 -1
(1 row)

● *
Description: Multiplication
Example:
openGauss=# SELECT 2*3 AS RESULT;
 result

 6
(1 row)

● /
Description: Division (The result is not rounded.)
Example:
openGauss=# SELECT 4/2 AS RESULT;
 result

 2
(1 row)
openGauss=# SELECT 4/3 AS RESULT;
 result

 1.33333333333333
(1 row)

● +/-

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 60

Description: Positive/Negative
Example:
openGauss=# SELECT -2 AS RESULT;
 result

 -2
(1 row)

● %
Description: Model (to obtain the remainder)
Example:
openGauss=# SELECT 5%4 AS RESULT;
 result

 1
(1 row)

● @
Description: Absolute value
Example:
openGauss=# SELECT @ -5.0 AS RESULT;
 result

 5.0
(1 row)

● ^
Description: Power (exponent calculation)
Example:
openGauss=# SELECT 2.0^3.0 AS RESULT;
 result

 8.0000000000000000
(1 row)

● |/
Description: Square root
Example:
openGauss=# SELECT |/ 25.0 AS RESULT;
 result

 5
(1 row)

● ||/
Description: Cubic root
Example:
openGauss=# SELECT ||/ 27.0 AS RESULT;
 result

 3
(1 row)

● !
Description: Factorial
Example:
openGauss=# SELECT 5! AS RESULT;
 result

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 61

 120
(1 row)

● !!
Description: Factorial (prefix operator)
Example:
openGauss=# SELECT !!5 AS RESULT;
 result

 120
(1 row)

● &
Description: Binary AND
Example:
openGauss=# SELECT 91&15 AS RESULT;
 result

 11
(1 row)

● |
Description: Binary OR
Example:
openGauss=# SELECT 32|3 AS RESULT;
 result

 35
(1 row)

● #
Description: Binary XOR
Example:
openGauss=# SELECT 17#5 AS RESULT;
 result

 20
(1 row)

● ~
Description: Binary NOT
Example:
openGauss=# SELECT ~1 AS RESULT;
 result

 -2
(1 row)

● <<
Description: Binary shift left
Example:
openGauss=# SELECT 1<<4 AS RESULT;
 result

 16
(1 row)

● >>
Description: Binary shift right
Example:

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 62

openGauss=# SELECT 8>>2 AS RESULT;
 result

 2
(1 row)

Comparison Operators
Comparison operators are available for the most data types and return Boolean
values.

All comparison operators are binary operators. Only data types that are the same
or that can be implicitly converted can be compared by using comparison
operators.

Table 6-1 describes the comparison operators provided by openGauss.

Table 6-1 Comparison operators

Operator Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= Equal to

<>, !=, or ^= Not equal to

Comparison operators are available for all relevant data types. All comparison
operators are binary operators that returned values of Boolean type. The
calculation priority of the inequality sign is higher than that of the equality sign. If
the entered data is different and cannot be implicitly converted, the comparison
fails. For example, an expression such as 1<2<3 is invalid because the less-than
sign (<) cannot be used to compare Boolean values and 3.

Example:

openGauss=# select 1<2;
 ?column?

 t
(1 row)

openGauss=# select 1>2;
 ?column?

 f
(1 row)

openGauss=# select 1>=2;
 ?column?

 f
(1 row)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 63

openGauss=# select 1<=2;
 ?column?

 t
(1 row)

openGauss=# select 1=2;
 ?column?

 f
(1 row)

openGauss=# select 1!=2;
 ?column?

 t
(1 row)

Logical Operators
Common logical operators include AND, OR, and NOT. The operation result can be
TRUE, FALSE, or NULL (which means unknown). Their priorities are NOT > AND >
OR.

The operators AND and OR are commutative. That is, you can switch the left and
right operand without affecting the result.

Table 6-2 lists the calculation rules, where a and b represent logical expressions.

Table 6-2 Operation rules

a b a AND b Result a OR b Result NOT a
Result

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE FALSE

TRUE NULL NULL TRUE FALSE

FALSE FALSE FALSE FALSE TRUE

FALSE NULL FALSE NULL TRUE

NULL NULL NULL NULL NULL

For details, see Examples.

6.9 Expressions
An expression is similar to a formula. You can use it in a query statement to
search for the result set of a specified condition in a database.

Simple Expressions
● Logical expressions

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 64

Logical Operators lists the operators and computation rules of logical
expressions.

● Comparison expressions
Operators lists the common comparison operators.
In addition to comparison operators, you can also use the following sentence
structures:
– BETWEEN operator

a BETWEEN x AND y is equivalent to a >= x AND a <= y.
a NOT BETWEEN x AND y is equivalent to a < x OR a > y.

– To check whether a value is NULL, use:
expression IS NULL
expression IS NOT NULL
or an equivalent (non-standard) sentence structure:
expression ISNULL
expression NOTNULL

NO TICE

Do not write expression=NULL or expression<>(!=)NULL, because NULL
represents an unknown value, and these expressions cannot determine
whether two unknown values are equal.

– is distinct from/is not distinct from

▪ is distinct from
If the data types and values of A and B are not completely the same,
the value is true.
If the data types and values of A and B are completely the same, the
value is false.
Null values are considered the same.

▪ is not distinct from
If the data types and values of A and B are not completely the same,
the value is false.
If the data types and values of A and B are completely the same, the
value is true.
Null values are considered the same.

● Pseudocolumn (ROWNUM)
ROWNUM is a pseudocolumn that returns a number indicating the row
number of the result obtained from the query. The value of ROWNUM in the
first row is 1, the value of ROWNUM in the second row is 2, and so on. The
return type of ROWNUM is numeric. ROWNUM can be used to limit the total
number of rows returned by a query. For example, the following statement
limits the maximum number of records returned from the customer_t1 table
to 3.
openGauss=# SELECT * FROM customer_t1 WHERE ROWNUM <= 3;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 65

---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
(3 rows)

Condition Expressions
Data that meets the requirements specified by conditional expressions are filtered
during SQL statement execution.

Conditional expressions include the following types:

● CASE
CASE expressions are similar to the CASE statements in other programming
languages.
Figure 6-1 shows the syntax of a CASE expression.

Figure 6-1 case::=

A CASE clause can be used in a valid expression. condition is an expression
that returns a value of Boolean type.
– If the result is true, the result of the CASE expression is the required

result.
– If the result is false, the following WHEN or ELSE clauses are processed

in the same way.
– If every WHEN condition is false, the result of the expression is the

result of the ELSE clause. If the ELSE clause is omitted and has no match
condition, the result is NULL.

Example:
openGauss=# CREATE TABLE tpcds.case_when_t1(CW_COL1 INT);

openGauss=# INSERT INTO tpcds.case_when_t1 VALUES (1), (2), (3);

openGauss=# SELECT * FROM tpcds.case_when_t1;
cw_col1

 1
 2
 3
(3 rows)

openGauss=# SELECT CW_COL1, CASE WHEN CW_COL1=1 THEN 'one' WHEN CW_COL1=2 THEN
'two' ELSE 'other' END FROM tpcds.case_when_t1 ORDER BY 1;
 cw_col1 | case
---------+-------
 1 | one
 2 | two
 3 | other
(3 rows)

openGauss=# DROP TABLE tpcds.case_when_t1;

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 66

● DECODE
Figure 6-2 shows the syntax of a DECODE expression.

Figure 6-2 decode::=

Compare each following compare(n) with base_expr. value(n) is returned if
a compare(n) matches the base_expr expression. If base_expr does not
match each compare(n), the default value is returned.
Example:
openGauss=# SELECT DECODE('A','A',1,'B',2,0);
 case

 1
(1 row)

● COALESCE
Figure 6-3 shows the syntax of a COALESCE expression.

Figure 6-3 coalesce::=

COALESCE returns its first not-NULL value. If all the parameters are NULL,
NULL is returned. This value is replaced by the default value when data is
displayed. Like a CASE expression, COALESCE only calculates the parameters
that are needed to determine the result. That is, parameters to the right of
the first non-null parameter are not calculated.
Example:
openGauss=# CREATE TABLE tpcds.c_tabl(description varchar(10), short_description varchar(10),
last_value varchar(10)) ;

openGauss=# INSERT INTO tpcds.c_tabl VALUES('abc', 'efg', '123');
openGauss=# INSERT INTO tpcds.c_tabl VALUES(NULL, 'efg', '123');

openGauss=# INSERT INTO tpcds.c_tabl VALUES(NULL, NULL, '123');

openGauss=# SELECT description, short_description, last_value, COALESCE(description,
short_description, last_value) FROM tpcds.c_tabl ORDER BY 1, 2, 3, 4;
 description | short_description | last_value | coalesce
-------------+-------------------+------------+----------
 abc | efg | 123 | abc
 | efg | 123 | efg
 | | 123 | 123
(3 rows)

openGauss=# DROP TABLE tpcds.c_tabl;

If description is not NULL, the value of description is returned. Otherwise,
parameter short_description is calculated. If short_description is not NULL,

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 67

the value of short_description is returned. Otherwise, parameter last_value
is calculated. If last_value is not NULL, the value of last_value is returned.
Otherwise, none is returned.
openGauss=# SELECT COALESCE(NULL,'Hello World');
 coalesce

 Hello World
(1 row)

● NULLIF
Figure 6-4 shows the syntax of a NULLIF expression.

Figure 6-4 nullif::=

Only if the value of value1 is equal to that of value2 can NULLIF return
NULL. Otherwise, value1 is returned.
Example:
openGauss=# CREATE TABLE tpcds.null_if_t1 (
 NI_VALUE1 VARCHAR(10),
 NI_VALUE2 VARCHAR(10)
);

openGauss=# INSERT INTO tpcds.null_if_t1 VALUES('abc', 'abc');
openGauss=# INSERT INTO tpcds.null_if_t1 VALUES('abc', 'efg');

openGauss=# SELECT NI_VALUE1, NI_VALUE2, NULLIF(NI_VALUE1, NI_VALUE2) FROM tpcds.null_if_t1
ORDER BY 1, 2, 3;

 ni_value1 | ni_value2 | nullif
-----------+-----------+--------
 abc | abc |
 abc | efg | abc
(2 rows)
openGauss=# DROP TABLE tpcds.null_if_t1;

If the value of value1 is equal to that of value2, NULL is returned. Otherwise,
the value of value1 is returned.
openGauss=# SELECT NULLIF('Hello','Hello World');
 nullif

 Hello
(1 row)

● GREATEST (maximum value) and LEAST (minimum value)
Figure 6-5 shows the syntax of a GREATEST expression.

Figure 6-5 greatest::=

You can select the maximum value from any numerical expression list.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 68

openGauss=# SELECT greatest(9000,155555,2.01);
 greatest

 155555
(1 row)

Figure 6-6 shows the syntax of a LEAST expression.

Figure 6-6 least::=

You can select the minimum value from any numerical expression list.
Each of the preceding numeric expressions can be converted into a common
data type, which will be the data type of the result.
The NULL values in the list will be omitted. The result is NULL only if the
results of all expressions are NULL.
Example:
openGauss=# SELECT least(9000,2);
 least

 2
(1 row)

● NVL
Figure 6-7 shows the syntax of an NVL expression.

Figure 6-7 nvl::=

If the value of value1 is NULL, the value of value2 is returned. Otherwise, the
value of value1 is returned.
Example:
openGauss=# SELECT nvl(null,1);
nvl

 1
(1 row)

openGauss=# SELECT nvl ('Hello World' ,1);
 nvl

 Hello World
(1 row)

Subquery Expressions
Subquery expressions include the following types:

● EXISTS/NOT EXISTS

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 69

Figure 6-8 shows the syntax of an EXISTS/NOT EXISTS expression.

Figure 6-8 EXISTS/NOT EXISTS::=

The parameter of an EXISTS expression is an arbitrary SELECT statement, or a
subquery. The subquery is computed to determine whether it returns any
rows. If it returns at least one row, the result of EXISTS is true. If it returns no
rows, the result of EXISTS is false.
The subquery will generally only be executed long enough to determine
whether at least one row is returned, not all the way to completion.
Example:
openGauss=# SELECT sr_reason_sk,sr_customer_sk FROM tpcds.store_returns WHERE EXISTS (SELECT
d_dom FROM tpcds.date_dim WHERE d_dom = store_returns.sr_reason_sk and sr_customer_sk <10);
sr_reason_sk | sr_customer_sk
--------------+----------------
 13 | 2
 22 | 5
 17 | 7
 25 | 7
 3 | 7
 31 | 5
 7 | 7
 14 | 6
 20 | 4
 5 | 6
 10 | 3
 1 | 5
 15 | 2
 4 | 1
 26 | 3
(15 rows)

● IN/NOT IN
Figure 6-9 shows the syntax of an IN/NOT IN expression.

Figure 6-9 IN/NOT IN::=

The right-side parenthesized subquery returns only one column. The left-side
expression is calculated and compared to each row of the subquery result.
The result of IN is true if any equal subquery row is found. The result is false
if no equal row is found (including the case where the subquery returns no
rows).
This is in accordance with SQL normal rules for Boolean combinations of null
values. If the columns corresponding to two rows equal and are not null, the
two rows are equal to each other. If any columns corresponding to the two

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 70

rows do not equal and are not null, the two rows are not equal to each other.
Otherwise, the result is NULL. If the result of each row does not equal and at
least one row yields NULL, the result of IN will be NULL.
Example:
openGauss=# SELECT sr_reason_sk,sr_customer_sk FROM tpcds.store_returns WHERE sr_customer_sk
IN (SELECT d_dom FROM tpcds.date_dim WHERE d_dom < 10);
sr_reason_sk | sr_customer_sk
--------------+----------------
 10 | 3
 26 | 3
 22 | 5
 31 | 5
 1 | 5
 32 | 5
 32 | 5
 4 | 1
 15 | 2
 13 | 2
 33 | 4
 20 | 4
 33 | 8
 5 | 6
 14 | 6
 17 | 7
 3 | 7
 25 | 7
 7 | 7
(19 rows)

● ANY/SOME
Figure 6-10 shows the syntax of an ANY/SOME expression.

Figure 6-10 any/some::=

The right-side parenthesized subquery returns only one column. The left-side
expression is calculated and compared to each row of the subquery result by
using a given operator, which must yield a Boolean result. The result of ANY
is true if any true result is obtained. The result is false if no true result is
found (including the case where the subquery returns no rows). SOME is a
synonym of ANY. IN can be equivalently replaced by ANY.
Example:
openGauss=# SELECT sr_reason_sk,sr_customer_sk FROM tpcds.store_returns WHERE sr_customer_sk
< ANY (SELECT d_dom FROM tpcds.date_dim WHERE d_dom < 10);
sr_reason_sk | sr_customer_sk
--------------+----------------
 26 | 3
 17 | 7
 32 | 5
 32 | 5
 13 | 2
 31 | 5
 25 | 7
 5 | 6
 7 | 7
 10 | 3
 1 | 5

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 71

 14 | 6
 4 | 1
 3 | 7
 22 | 5
 33 | 4
 20 | 4
 33 | 8
 15 | 2
(19 rows)

● ALL
Figure 6-11 shows the syntax of an ALL expression.

Figure 6-11 all::=

The right-side parenthesized subquery returns only one column. The left-side
expression is calculated and compared to each row of the subquery result by
using a given operator, which must yield a Boolean result. The result of ALL is
true if all rows yield true results (including the case where the subquery
returns no rows). The result is false if any false result is found.
Example:
openGauss=# SELECT sr_reason_sk,sr_customer_sk FROM tpcds.store_returns WHERE sr_customer_sk
< all(SELECT d_dom FROM tpcds.date_dim WHERE d_dom < 10);
 sr_reason_sk | sr_customer_sk
--------------+----------------
(0 rows)

Array Expressions
● IN

expression IN (value [, ...])
The parentheses on the right contain an expression list. The expression result
on the left is compared with the content in the expression list. If the content
in the list meets the expression result on the left, the result of IN is true. If no
content meets the expression result, the result of IN is false.
Example:
openGauss=# SELECT 8000+500 IN (10000, 9000) AS RESULT;
 result

 f
(1 row)

If the expression result is null or the expression list does not meet the
expression conditions and at least one null value is returned for the
expression list on the right, the result of IN is null rather than false. This
method is consistent with the Boolean rules used when SQL statements
return null values.

● NOT IN
expression NOT IN (value [, ...])
The parentheses on the right contain an expression list. The expression result
on the left is compared with the content in the expression list. If the content
in the list does not meet the expression result on the left, the result of NOT

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 72

IN is true. If any content meets the expression result, the result of NOT IN is
false.
Example:
openGauss=# SELECT 8000+500 NOT IN (10000, 9000) AS RESULT;
 result

 t
(1 row)

If the query statement result is null or the expression list does not meet the
expression conditions and at least one null value is returned for the
expression list on the right, the result of NOT IN is null rather than false. This
method is consistent with the Boolean rules used when SQL statements
return null values.

NO TE

In all situations, X NOT IN Y equals to NOT(X IN Y).

● ANY/SOME(array)
expression operator ANY (array expression)
expression operator SOME (array expression)
The right side is a parenthesized expression, which must yield an array value.
The result of the expression on the left uses operators to calculate and
compare the results in each row of the array expression. The comparison
result must be a Boolean value.
– If at least one comparison result is true, the result of ANY is true.
– If no comparison result is true, the result of ANY is false.
– If no comparison result is true and the array expression generates at least

one null value, the value of ANY is NULL rather than false. This method
is consistent with the Boolean rules used when SQL statements return
null values.

– SOME is a synonym of ANY.
Example:
openGauss=# SELECT 8000+500 < SOME (array[10000,9000]) AS RESULT;
 result

 t
(1 row)

openGauss=# SELECT 8000+500 < ANY (array[10000,9000]) AS RESULT;
 result

 t
(1 row)

● ALL(array)
expression operator ALL (array expression)
The right side is a parenthesized expression, which must yield an array value.
The result of the expression on the left uses operators to calculate and
compare the results in each row of the array expression. The comparison
result must be a Boolean value.
– The result of ALL is true if all comparison results are true (including the

case where the array has zero elements).
– The result of ALL is false if one or multiple comparison results are false.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 73

– If the array expression yields a null array, the result of ALL is NULL. If the
left-hand expression yields NULL, the result of ALL is generally NULL
(though a non-strict comparison operator could possibly yield a different
result). Also, if the right-hand array contains any null elements and no
false comparison result is obtained, the result of ALL is NULL, not true
(again, assuming a strict comparison operator). This method is consistent
with the Boolean rules used when SQL statements return null values.

Example
openGauss=# SELECT 8000+500 < ALL (array[10000,9000]) AS RESULT;
 result

 t
(1 row)

Row Expressions

The syntax is as follows:

row_constructor operator row_constructor

Both sides of the row expression are row constructors. The values of both rows
must have the same number of columns and they are compared with each other.
Row comparison allows operators including =, <>, <, <=, and >= or a similar
operator.

The use of operators = and <> is slightly different from the other operators. If all
columns of two rows are not null and equal, the two rows are equal. If any
column in two rows is not null and not equal, the two rows are not equal.
Otherwise, the comparison result is null.

For operators <, <=, >, and > =, the columns in rows are compared from left to
right until a pair of columns that are not equal or are null are detected. If this pair
of columns contains at least one null value, the comparison result is null.
Otherwise, the comparison result of this pair of columns is the final result.

Example:

openGauss=# SELECT ROW(1,2,NULL) < ROW(1,3,0) AS RESULT;
 result

 t
(1 row)

6.10 WHERE Clause
When you need to query data from a table based on specified conditions, you can
add a WHERE clause to the SELECT statement to filter out unnecessary data. The
WHERE clause forms an expression for row selection and is used to obtain data
based on specified conditions. Values in the table are returned only when the
specified conditions are met.

Syntax
SELECT
{ * | [column, ...] }
[FROM from_item [, ...]]
[WHERE condition];

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 74

Parameter Description
● WHERE clause

The WHERE clause forms an expression for row selection to narrow down the
query range of the SELECT statement. Comparison operators or logical
operators, such as >, <, =, LIKE, or NOT, can be used in the WHERE clause.

● condition
condition indicates any expression that returns a value of Boolean type. Rows
that do not meet this condition will not be retrieved.

Examples
Use logical operators to read data from the customer_t1 table.

● AND
Locate the row where the value of c_customer_id is hello and that of
c_customer_sk is 3869.
openGauss=# SELECT * FROM customer_t1 WHERE c_customer_sk = 3869 AND c_customer_id =
'hello';
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | hello | Grace | | 1000
 3869 | hello | | |
 3869 | hello | | |
(4 rows)

● OR
Locate the row where the value of c_customer_sk is greater than 6985 or
that of c_customer_id is hello.
openGauss=# SELECT * FROM customer_t1 WHERE c_customer_sk > 6985 OR c_customer_id = 'hello';
c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | hello | Grace | | 1000
 3869 | hello | | |
 3869 | hello | | |
 9976 | world | James | | 5000
(5 rows)

● NOT NULL
Locate the row where the value of c_last_name is not empty in the
customer_t1 table.
openGauss=# SELECT * FROM customer_t1 WHERE c_last_name IS NOT NULL;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
(0 rows)

● BETWEEN
Locate the row where the value of c_customer_sk is between 4000 and 9000.
openGauss=# SELECT * FROM customer_t1 WHERE c_customer_sk BETWEEN 4000 AND 9000;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 6985 | maps | Joes | | 2200
 4421 | Admin | Local | | 3000
(2 rows)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 75

6.11 ORDER BY Clause
The ORDER BY clause sorts the data in one or more columns retrieved by the
SELECT statement in ascending (ASC) or descending (DESC) order.

Syntax
SELECT
{ * | [column, ...] }
[FROM from_item [, ...]]
[ORDER BY {expression [ASC | DESC] }];

Parameter Description
● ORDER BY clause

Sorts data retrieved by the SELECT statement in descending or ascending
order. If the ORDER BY expression contains multiple columns:
– If two columns are equal according to the leftmost expression, they are

compared according to the next expression and so on.
– If they are equal according to all specified expressions, they are returned

in an implementation-dependent order.

Examples
● Sort the result in ascending order based on the value of c_customer_sk.

openGauss=# SELECT * FROM customer_t1 ORDER BY c_customer_sk ASC;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
 3869 | hello | | |
 4421 | Admin | Local | | 3000
 6985 | maps | Joes | | 2200
 9976 | world | James | | 5000
 | | | |
(9 rows)

● Sort the result in descending order based on the value of c_customer_sk.
openGauss=# SELECT * FROM customer_t1 ORDER BY c_customer_sk DESC;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 | | | |
 9976 | world | James | | 5000
 6985 | maps | Joes | | 2200
 4421 | Admin | Local | | 3000
 3869 | hello | Grace | | 1000
 3869 | hello | | |
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
(9 rows)

6.12 DISTINCT
The DISTINCT keyword is used together with the SELECT statement to remove
duplicate records and obtain only unique records.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 76

When there are multiple duplicate records in a table, the DISTINCT keyword is
used to obtain only unique records instead of duplicate records.

Syntax
SELECT DISTINCT [ON (expression [, ...])]]
{ * | [column, ...] }
[FROM from_item [, ...]];

Parameter Description
● DISTINCT [ON (expression [, ...])]

Removes all duplicate rows from the result set of the SELECT statement so that
each row in the result set is unique.

Retains only the first row in the set of rows that have the same result computed
on the given expression.

Examples
Insert the following data into the customer_t1 table:

openGauss=# INSERT INTO customer_t1 (c_customer_sk, c_customer_id, c_first_name,Amount) VALUES
 (6881, 'maps', 'Lily',1000),
 (4320, 'tpcds', 'Lily',2000);

The current data is as follows:

openGauss=# SELECT * FROM customer_t1 ;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
 3869 | hello | | |
 | | | |
 6985 | maps | Joes | | 2200
 9976 | world | James | | 5000
 4421 | Admin | Local | | 3000
 6881 | maps | Lily | | 1000
 4320 | tpcds | Lily | | 2000
(11 rows)

Query all values of c_first_name in the customer_t1 table. There are two Lily and
three Grace.

openGauss=# SELECT c_first_name FROM customer_t1 ;
 c_first_name

 Grace
 Grace
 Grace

 Joes
 James
 Local
 Lily
 Lily
(11 rows)

Use the DISTINCT keyword in the SELECT statement. The result shows that
duplicate data has been deleted.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 77

openGauss=# SELECT DISTINCT c_first_name FROM customer_t1 ;
 c_first_name

 James
 Grace
 Local

 Joes
 Lily
(6 rows)

6.13 GROUP BY Clause
The GROUP BY clause is used together with the SELECT statement to group the
same data. You can group one or more columns, but the columns to be grouped
must exist.

Syntax
SELECT
{ * | [column, ...] }
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY grouping_element [, ...]]
[ORDER BY {expression [ASC | DESC] }];

Parameter Description
● GROUP BY clause

Groups the query results based on the values of one or more columns. The
query results with the same value are in the same group.
The GROUP BY clause is placed after the WHRER clause and before the
ORDER BY clause in the SELECT statement.

Examples

The customer_t1 table contains duplicate values of c_first_name. The duplicate
values of c_first_name are in the same group, and the sum of the values of
Amount is calculated.

openGauss=# SELECT c_first_name, sum(Amount) FROM customer_t1 GROUP BY c_first_name;
 c_first_name | sum
--------------+------
 James | 5000
 Grace | 1000
 Local | 3000
 |
 Joes | 2200
 Lily | 3000
(6 rows)

6.14 HAVING Clause
The HAVING clause filters data after grouping.

The WHERE clause sets conditions on selected columns, while the HAVING clause
sets conditions on groups created by the GROUP BY clause.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 78

Syntax
SELECT
{ * | [column, ...] }
[FROM from_item [, ...]]
[WHERE condition]
[GROUP BY grouping_element [, ...]]
[HAVING condition [, ...]]
[ORDER BY {expression [ASC | DESC] }];

Parameter Description
● HAVING clause

Selects special groups by working with the GROUP BY clause. The HAVING
clause compares some attributes of groups with a constant. Only groups that
match the logical expression in the HAVING clause are extracted.

Examples
In the following example, data is grouped based on the value of c_first_name
which is less than 2.

openGauss=# SELECT c_first_name FROM customer_t1 GROUP BY c_first_name HAVING
count(c_first_name) < 2;

The result is as follows:

 c_first_name

 James
 Local

 Joes
(4 rows)

In the following example, data is grouped based on the value of c_first_name
which is greater than 1.

openGauss=# SELECT c_first_name FROM customer_t1 GROUP BY c_first_name HAVING
count(c_first_name) > 1;

The result is as follows:

 c_first_name

 Grace
 Lily
(2 rows)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 79

6.15 Date/Time Functions and Operators

Date and Time Operators

WARNING

When the user uses date and time operators, explicit type prefixes are modified
for corresponding operands to ensure that the operands parsed by the database
are consistent with what the user expects, and no unexpected results occur.
For example, abnormal mistakes will occur in the following example without an
explicit data type.
SELECT date '2001-10-01' - '7' AS RESULT;

Table 6-3 Time and date operators

Ope
rato
r

Example

+ openGauss=# SELECT date '2001-9-28' + integer '7' AS RESULT;
 result

 2001-10-05
(1 row)

openGauss=# SELECT date '2001-09-28' + interval '1 hour' AS RESULT;
 result

 2001-09-28 01:00:00
(1 row)

openGauss=# SELECT date '2001-09-28' + time '03:00' AS RESULT;
 result

 2001-09-28 03:00:00
(1 row)

openGauss=# SELECT interval '1 day' + interval '1 hour' AS RESULT;
 result

 1 day 01:00:00
(1 row)

openGauss=# SELECT timestamp '2001-09-28 01:00' + interval '23 hours' AS RESULT;
 result

 2001-09-29 00:00:00
(1 row)

openGauss=# SELECT time '01:00' + interval '3 hours' AS RESULT;
 result

 04:00:00
(1 row)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 80

Ope
rato
r

Example

- openGauss=# SELECT date '2001-10-01' - date '2001-09-28' AS RESULT;
 result

 3 days
(1 row)

openGauss=# SELECT date '2001-10-01' - integer '7' AS RESULT;
 result

 2001-09-24 00:00:00
(1 row)

openGauss=# SELECT date '2001-09-28' - interval '1 hour' AS RESULT;
 result

 2001-09-27 23:00:00
(1 row)

openGauss=# SELECT time '05:00' - time '03:00' AS RESULT;
 result

 02:00:00
(1 row)

openGauss=# SELECT time '05:00' - interval '2 hours' AS RESULT;
 result

 03:00:00
(1 row)

openGauss=# SELECT timestamp '2001-09-28 23:00' - interval '23 hours' AS RESULT;
 result

 2001-09-28 00:00:00
(1 row)

openGauss=# SELECT interval '1 day' - interval '1 hour' AS RESULT;
 result

 23:00:00
(1 row)

openGauss=# SELECT timestamp '2001-09-29 03:00' - timestamp '2001-09-27 12:00' AS RESULT;
 result

 1 day 15:00:00
(1 row)

* openGauss=# SELECT 900 * interval '1 second' AS RESULT;
 result

 00:15:00
(1 row)

openGauss=# SELECT 21 * interval '1 day' AS RESULT;
 result

 21 days
(1 row)

openGauss=# SELECT double precision '3.5' * interval '1 hour' AS RESULT;
 result

 03:30:00
(1 row)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 81

Ope
rato
r

Example

/ openGauss=# SELECT interval '1 hour' / double precision '1.5' AS RESULT;
 result

 00:40:00
(1 row)

Time and Date Functions
● age(timestamp, timestamp)

Description: Subtracts parameters, producing a result in YYYY-MM-DD format.
If the result is negative, the returned result is also negative. The input
parameters can contain a time zone or not.
Return type: interval
Example:
openGauss=# SELECT age(timestamp '2001-04-10', timestamp '1957-06-13');
 age

 43 years 9 mons 27 days
(1 row)

● age(timestamp)
Description: Minuses the current time with the parameter. The input
parameter can contain a time zone or not.
Return type: interval
Example:
openGauss=# SELECT age(timestamp '1957-06-13');
 age

 60 years 2 mons 18 days
(1 row)

● clock_timestamp()
Description: Specifies the current timestamp of the real-time clock.
Return type: timestamp with time zone
Example:
openGauss=# SELECT clock_timestamp();
 clock_timestamp

 2017-09-01 16:57:36.636205+08
(1 row)

● current_date
Description: Specifies the current date.
Return type: date
Example:
openGauss=# SELECT current_date;
 date

 2017-09-01
(1 row)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 82

● current_time
Description: Specifies the current time.
Return type: time with time zone
Example:
openGauss=# SELECT current_time;
 timetz

 16:58:07.086215+08
(1 row)

● current_timestamp
Description: Specifies the current date and time.
Return type: timestamp with time zone
Example:
openGauss=# SELECT current_timestamp;
 pg_systimestamp

 2017-09-01 16:58:19.22173+08
(1 row)

● date_part(text, timestamp)
Description: Obtains the value of a subcolumn in the date or time value, for
example, the year or hour. It is equivalent to extract(field from timestamp).
Timestamp type: abstime, date, interval, reltime, time with time zone, time
without time zone, timestamp with time zone, timestamp without time zone
Return type: double precision
Example:
openGauss=# SELECT date_part('hour', timestamp '2001-02-16 20:38:40');
 date_part

 20
(1 row)

● date_part(text, interval)
Description: Obtains the value of a subcolumn in the date or time value.
When obtaining the month value, if the value is greater than 12, obtain the
remainder after it is divided by 12. It is equivalent to extract(field from
timestamp).
Return type: double precision
Example:
openGauss=# SELECT date_part('month', interval '2 years 3 months');
 date_part

 3
(1 row)

● date_trunc(text, timestamp)
Description: Truncates to the precision specified by text.
Return type: interval, timestamp with time zone, timestamp without time
zone
Example:
openGauss=# SELECT date_trunc('hour', timestamp '2001-02-16 20:38:40');
 date_trunc

 2001-02-16 20:00:00
(1 row)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 83

● trunc(timestamp)
Description: Truncates to day by default.
Example:
openGauss=# SELECT trunc(timestamp '2001-02-16
20:38:40');
 trunc

2001-02-16 00:00:00
(1 row)

● daterange(arg1, arg2)
Description: Obtains time boundary information. The type of arg1 and arg2 is
date.
Return type: daterange
Example:
openGauss=# select daterange('2000-05-06','2000-08-08');
 daterange

 [2000-05-06,2000-08-08)
(1 row)

● extract(field from timestamp)
Description: Obtains the hour.
Return type: double precision
Example:
openGauss=# SELECT extract(hour from timestamp '2001-02-16 20:38:40');
 date_part

 20
(1 row)

● extract(field from interval)
Description: Obtains the month. If the value is greater than 12, obtain the
remainder after it is divided by 12.
Return type: double precision
Example:
openGauss=# SELECT extract(month from interval '2 years 3 months');
 date_part

 3
(1 row)

● isfinite(date)
Description: Tests for a valid date.
Return type: Boolean
Example:
openGauss=# SELECT isfinite(date '2001-02-16');
 isfinite

 t
(1 row)

● isfinite(timestamp)
Description: Tests for a valid timestamp.
Return type: Boolean
Example:

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 84

openGauss=# SELECT isfinite(timestamp '2001-02-16 21:28:30');
 isfinite

 t
(1 row)

● isfinite(interval)
Description: Tests for a valid interval.
Return type: Boolean
Example:
openGauss=# SELECT isfinite(interval '4 hours');
 isfinite

 t
(1 row)

● justify_days(interval)
Description: Adjusts intervals to 30-day time periods, which are represented as
months.
Return type: interval
Example:
openGauss=# SELECT justify_days(interval '35 days');
 justify_days

 1 mon 5 days
(1 row)

● justify_hours(interval)
Description: Sets the time interval in days (24 hours is one day).
Return type: interval
Example:
openGauss=# SELECT JUSTIFY_HOURS(INTERVAL '27 HOURS');
 justify_hours

 1 day 03:00:00
(1 row)

● justify_interval(interval)
Description: Adjusts interval using justify_days and justify_hours.
Return type: interval
Example:
openGauss=# SELECT JUSTIFY_INTERVAL(INTERVAL '1 MON -1 HOUR');
 justify_interval

 29 days 23:00:00
(1 row)

● localtime
Description: Specifies the current time.
Return type: time
Example:
openGauss=# SELECT localtime AS RESULT;
 result

 16:05:55.664681
(1 row)

● localtimestamp

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 85

Description: Specifies the current date and time.
Return type: timestamp
Example:
openGauss=# SELECT localtimestamp;
 timestamp

 2017-09-01 17:03:30.781902
(1 row)

● now()
Description: Specifies the current date and time.
Return type: timestamp with time zone
Example:
openGauss=# SELECT now();
 now

 2017-09-01 17:03:42.549426+08
(1 row)

● timenow
Description: Specifies the current date and time.
Return type: timestamp with time zone
Example:
openGauss=# select timenow();
 timenow

 2020-06-23 20:36:56+08
(1 row)

● numtodsinterval(num, interval_unit)
Description: Converts a number to the interval type. num is a numeric-typed
number. interval_unit is a string in the following format: 'DAY' | 'HOUR' |
'MINUTE' | 'SECOND'
Example:
openGauss=# SELECT numtodsinterval(100, 'HOUR');
 numtodsinterval

 100:00:00
(1 row)

openGauss=# SET intervalstyle = a;
SET
openGauss=# SELECT numtodsinterval(100, 'HOUR');
 numtodsinterval

 +000000004 04:00:00.000000000
(1 row)

● pg_sleep(seconds)
Description: Specifies the delay time of the server thread in unit of second.
Return type: void
Example:
openGauss=# SELECT pg_sleep(10);
 pg_sleep

(1 row)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 86

● statement_timestamp()
Description: Specifies the current date and time.
Return type: timestamp with time zone
Example:
openGauss=# SELECT statement_timestamp();
 statement_timestamp

 2017-09-01 17:04:39.119267+08
(1 row)

● sysdate
Description: Specifies the current date and time.
Return type: timestamp
Example:
openGauss=# SELECT sysdate;
 sysdate

 2017-09-01 17:04:49
(1 row)

● timeofday()
Description: Specifies the current date and time (like clock_timestamp, but
returned as a text string)
Return type: text
Example:
openGauss=# SELECT timeofday();
 timeofday

 Fri Sep 01 17:05:01.167506 2017 CST
(1 row)

● transaction_timestamp()
Description: Specifies the current date and time (equivalent to
current_timestamp).
Return type: timestamp with time zone
Example:
openGauss=# SELECT transaction_timestamp();
 transaction_timestamp

 2017-09-01 17:05:13.534454+08
(1 row)

● add_months(d,n)
Description: Returns the date date plus integer months.
Return type: timestamp
Example:
openGauss=# SELECT add_months(to_date('2017-5-29', 'yyyy-mm-dd'), 11) FROM sys_dummy;
 add_months

 2018-04-29 00:00:00
(1 row)

● last_day(d)
Description: Returns the date of the last day of the month that contains date.
Return type: timestamp
Example:

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 87

openGauss=# select last_day(to_date('2017-01-01', 'YYYY-MM-DD')) AS cal_result;
 cal_result

 2017-01-31 00:00:00
(1 row)

● next_day(x,y)

Description: Calculates the time of the next week y started from x.

Return type: timestamp

Example:
openGauss=# select next_day(timestamp '2017-05-25 00:00:00','Sunday')AS cal_result;
 cal_result

 2017-05-28 00:00:00
(1 row)

● tinterval(abstime, abstime)

Description: Creates a time interval with two pieces of absolute time.

Return type: tinterval

Example:
openGauss=# call tinterval(abstime 'May 10, 1947 23:59:12', abstime 'Mon May 1 00:30:30 1995');
 tinterval

 ["1947-05-10 23:59:12+09" "1995-05-01 00:30:30+08"]
(1 row)

● tintervalend(tinterval)

Description: Returns the end time of tinterval.

Return type: abstime

Example:
openGauss=# select tintervalend('["Sep 4, 1983 23:59:12" "Oct4, 1983 23:59:12"]');
 tintervalend

 1983-10-04 23:59:12+08
(1 row)

● tintervalrel(tinterval)

Description: Calculates and returns the relative time of tinterval.

Return type: reltime

Example:
openGauss=# select tintervalrel('["Sep 4, 1983 23:59:12" "Oct4, 1983 23:59:12"]');
 tintervalrel

 1 mon
(1 row)

TIMESTAMPDIFF
● TIMESTAMPDIFF(unit , timestamp_expr1, timestamp_expr2)

The timestampdiff function returns the result of timestamp_expr2 –
timestamp_expr1 in the specified unit. timestamp_expr1 and timestamp_expr2
must be value expressions of timestamp, timestamptz, or date type. unit
determines the unit of the difference between two dates.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 88

NO TE

This function is valid only when openGauss is compatible with the MY type (that is,
dbcompatibility = 'B').

● year
Calculates the number of years between two dates.
openGauss=# SELECT TIMESTAMPDIFF(YEAR, '2018-01-01', '2020-01-01');
 timestamp_diff

 2
(1 row)

● quarter
Calculates the number of quarters between two dates.
openGauss=# SELECT TIMESTAMPDIFF(QUARTER, '2018-01-01', '2020-01-01');
 timestamp_diff

 8
(1 row)

● month
Calculates the number of months between two dates.
openGauss=# SELECT TIMESTAMPDIFF(MONTH, '2018-01-01', '2020-01-01');
 timestamp_diff

 24
(1 row)

● week
Calculates the number of weeks between two dates.
openGauss=# SELECT TIMESTAMPDIFF(WEEK, '2018-01-01', '2020-01-01');
 timestamp_diff

 104
(1 row)

● day
Calculates the number of days between two dates.
openGauss=# SELECT TIMESTAMPDIFF(DAY, '2018-01-01', '2020-01-01');
 timestamp_diff

 730
(1 row)

● hour
Calculates the number of hours between two pieces of time.
openGauss=# SELECT TIMESTAMPDIFF(HOUR, '2020-01-01 10:10:10', '2020-01-01 11:11:11');
 timestamp_diff

 1
(1 row)

● minute
Calculates the number of minutes between two pieces of time.
openGauss=# SELECT TIMESTAMPDIFF(MINUTE, '2020-01-01 10:10:10', '2020-01-01 11:11:11');
 timestamp_diff

 61
(1 row)

● second
Calculates the number of seconds between two pieces of time.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 89

openGauss=# SELECT TIMESTAMPDIFF(SECOND, '2020-01-01 10:10:10', '2020-01-01 11:11:11');
 timestamp_diff

 3661
(1 row)

● microseconds
Calculates the number of seconds between two pieces of time, including
fractional parts, multiplied by 1,000,000.
openGauss=# SELECT TIMESTAMPDIFF(MICROSECOND, '2020-01-01 10:10:10.000000', '2020-01-01
10:10:10.111111');
 timestamp_diff

 111111
(1 row)

● timestamp_expr (with a time zone)
openGauss=# SELECT TIMESTAMPDIFF(HOUR,'2020-05-01 10:10:10-01','2020-05-01 10:10:10-03');
 timestamp_diff

 2
(1 row)

EXTRACT
● EXTRACT(field FROM source)

The extract function retrieves subcolumns such as year or hour from date or time
values. source must be a value expression of timestamp, time, or interval type.
(Expressions of the date type are cast to timestamp and can therefore be used as
well.) field is an identifier or string that specifies the columns to be extracted
from the source value. The extract function returns values of double precision
type. The following are valid names of field:

● century
Specifies the number of centuries.
The first century starts at 0001-01-01 00:00:00 AD. This definition applies to
all Gregorian calendar countries. There is no century numbered 0. You go
from the 1st century BC to the 1st century AD.
Example:
openGauss=# SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');
 date_part

 20
(1 row)

● day
– Specifies the date (1–31) of the month for timestamp.

openGauss=# SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part

 16
(1 row)

– Specifies the number of days for interval.
openGauss=# SELECT EXTRACT(DAY FROM INTERVAL '40 days 1 minute');
 date_part

 40
(1 row)

● decade

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 90

Specifies the number of decades.
openGauss=# SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part

 200
(1 row)

● dow
Specifies the day of the week. The value range from 0 (indicating Sunday) to
6 (indicating Saturday).
openGauss=# SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part

 5
(1 row)

● doy
Specifies the day of the year (1–365 or 1–366).
openGauss=# SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part

 47
(1 row)

● epoch
– For timestamp with time zone, it specifies the number of seconds since

1970-01-01 00:00:00-00 UTC (can be negative).
For date and timestamp, it specifies the number of seconds since
1970-01-01 00:00:00-00 (local time).
For interval, it specifies the total number of seconds in the interval.
openGauss=# SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16
20:38:40.12-08');
 date_part

 982384720.12
(1 row)
openGauss=# SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');
 date_part

 442800
(1 row)

– The following converts an epoch value back to a timestamp.
openGauss=# SELECT TIMESTAMP WITH TIME ZONE 'epoch' + 982384720.12 * INTERVAL '1
second' AS RESULT;
 result

 2001-02-17 12:38:40.12+08
(1 row)

● hour
Specifies the hour column (0–23).
openGauss=# SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part

 20
(1 row)

● isodow
Specifies the day of the week (1–7).
1 indicates Monday and 7 indicates Sunday.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 91

NO TE

This is identical to dow except for Sunday.
openGauss=# SELECT EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40');
 date_part

 7
(1 row)

● isoyear
The ISO 8601 year that the date falls in (not applicable to intervals).
Each ISO year begins with the Monday of the week containing January 4, so
in early January or late December the ISO year may be different from the
Gregorian year. See the week column for more information.
openGauss=# SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');
 date_part

 2005
(1 row)
openGauss=# SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');
 date_part

 2006
(1 row)

● microseconds
Specifies the second column, including fractional parts, multiplied by
1,000,000.
openGauss=# SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');
 date_part

 28500000
(1 row)

● millennium
Specifies the number of millenniums.
Years in the 1900s are in the second millennium. The third millennium started
from January 1, 2001.
openGauss=# SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part

 3
(1 row)

● milliseconds
Specifies the second column, including fractional parts, multiplied by 1000.
Note that this includes full seconds.
openGauss=# SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');
 date_part

 28500
(1 row)

● minute
Specifies the minute column (0–59).
openGauss=# SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part

 38
(1 row)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 92

● month
For timestamp, it specifies the month in the year (1–12).
openGauss=# SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part

 2
(1 row)

For interval, it specifies the number of months and modulo 12 (0–11).
openGauss=# SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');
 date_part

 1
(1 row)

● quarter
Specifies the quarter of the year (1–4) that the date is in.
openGauss=# SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part

 1
(1 row)

● second
Specifies the second column, including fractional parts (0–59).
openGauss=# SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');
 date_part

 28.5
(1 row)

● timezone
Time zone offset from UTC, measured in seconds. Positive values correspond
to time zones east of UTC, and negative values correspond to zones west of
UTC.

● timezone_hour
Hour part of the time zone offset.

● timezone_minute
Minute part of the time zone offset.

● week
Number of the week of the year that the day is in. By definition (ISO 8601),
the first week of a year contains January 4 of that year. (The ISO-8601 week
starts on Monday.) In other words, the first Thursday of a year is in week 1 of
that year.
Because of this, it is possible for early January dates to be part of the 52nd or
53rd week of the previous year, and late December dates to be part of the 1st
week of the next year. For example, 2005-01-01 is part of the 53rd week of
year 2004, 2006-01-01 is part of the 52nd week of year 2005, and
2012-12-31 is part of the 1st week of year 2013. You are advised to use the
columns isoyear and week together to ensure consistency.
openGauss=# SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part

 7
(1 row)

● year

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 93

Specifies the year column.
openGauss=# SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');
 date_part

 2001
(1 row)

date_part

The date_part function is modeled on the traditional Ingres equivalent to the
SQL-standard function extract.

● date_part('field', source)

Note that here the field parameter needs to be a string value, not a name. The
valid field names for date_part are the same as those for extract. For details, see
EXTRACT.

Example:

openGauss=# SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40');
 date_part

 16
(1 row)
openGauss=# SELECT date_part('hour', INTERVAL '4 hours 3 minutes');
 date_part

 4
(1 row)

Table 6-4 specifies the schema for formatting date and time values.

Table 6-4 Schema for formatting date and time values

Category Pattern Description

Hour HH Number of hours in one day (01–12)

HH12 Number of hours in one day (01–12)

HH24 Number of hours in one day (00–23)

Minute MI Minute (00–59)

Second SS Second (00–59)

FF Microsecond (000000–999999)

SSSSS Second after midnight (0–86399)

Morning
and
afternoon

AM or A.M. Morning identifier

PM or P.M. Afternoon identifier

Year Y,YYY Year with commas (with four digits or more)

SYYYY Year with four digits BC

YYYY Year (with four digits or more)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 94

Category Pattern Description

YYY Last three digits of a year

YY Last two digits of a year

Y Last one digit of a year

IYYY ISO year (with four digits or more)

IYY Last three digits of an ISO year

IY Last two digits of an ISO year

I Last one digit of an ISO year

RR Last two digits of a year (A year of the 20th
century can be stored in the 21st century.)

RRRR Capable of receiving a year with four digits or
two digits. If there are 2 digits, the value is
the same as the returned value of RR. If there
are 4 digits, the value is the same as YYYY.

● BC or B.C.
● AD or A.D.

Era indicator Before Christ (BC) and After
Christ (AD)

Month MONTH Full spelling of a month in uppercase (9
characters are filled in if the value is empty.)

MON Month in abbreviated format in uppercase
(with three characters)

MM Month (01–12)

RM Month in Roman numerals (I–XII; I=JAN) and
uppercase

Day DAY Full spelling of a date in uppercase (9
characters are filled in if the value is empty.)

DY Day in abbreviated format in uppercase (with
three characters)

DDD Day in a year (001–366)

DD Day in a month (01–31)

D Day in a week (1–7)

Week W Week in a month (1–5) (The first week starts
from the first day of the month.)

WW Week in a year (1–53) (The first week starts
from the first day of the year.)

IW Week in an ISO year (The first Thursday is in
the first week.)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 95

Category Pattern Description

Century CC Century (with two digits) (The 21st century
starts from 2001-01-01.)

Julian
date

J Julian date (starting from January 1 of 4712
BC)

Quarter Q Quarter

NO TE

In the table, the rules for RR to calculate years are as follows:

● If the range of the input two-digit year is between 00 and 49:

If the last two digits of the current year are between 00 and 49, the first two digits of
the returned year are the same as the first two digits of the current year.

If the last two digits of the current year are between 50 and 99, the first two digits of
the returned year are equal to the first two digits of the current year plus 1.

● If the range of the input two-digit year is between 50 and 99:

If the last two digits of the current year are between 00 and 49, the first two digits of
the returned year are equal to the first two digits of the current year minus 1.

If the last two digits of the current year are between 50 and 99, the first two digits of
the returned year are the same as the first two digits of the current year.

6.16 Mode Matching Operators
There are three separate approaches to mode matching provided by the database:
traditional SQL LIKE operator, SIMILAR TO operator, and POSIX-style regular
expression. Besides these basic operators, some functions can be used to extract or
replace matching substrings and to split a string at matching locations.

LIKE

Description: Specifies whether the string matches the mode string following LIKE.
The LIKE expression returns true if the string matches the provided mode. (As
expected, the NOT LIKE expression returns false if the LIKE expression returns
true, and vice versa.)

Matching rules:

1. This operator can succeed only when its mode matches the entire string. If
you want to match a sequence in any position within the string, the mode
must begin and end with a percent sign (%).

2. The underscore (_) represents (matches) any single character. The percent
sign (%) indicates the wildcard character of any string.

3. To match a literal underscore or percent sign, the respective character in the
mode must be preceded by an escape character. The default escape character
is the backslash but a different one can be selected by using the ESCAPE
clause.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 96

4. To match escape characters, enter two escape characters. For example, to
write a mode constant containing a backslash (\), you need to enter two
backslashes in SQL statements.

NO TE

When standard_conforming_strings is set to off, any backslashes you write in literal
string constants will need to be doubled. So, writing a mode that matches a single
backslash actually involves writing four backslashes in the statement (you can avoid
this by selecting a different escape character with the ESCAPE clause so that the
backslash is no longer a special character of LIKE. But the backslash is still a special
character of the character text analyzer, so you still need two backslashes.)

In a MySQL-compatible mode, it is also possible to select no escape character by
writing ESCAPE ''. This effectively disables the escape mechanism, which makes it
impossible to turn off the special meaning of underscores and percent signs in the
mode.

5. The ILIKE keyword can be used to replace LIKE to make the match case-
insensitive.

6. Operator ~~ is equivalent to LIKE, and operator ~~* corresponds to ILIKE.

Example:

openGauss=# SELECT 'abc' LIKE 'abc' AS RESULT;
 result

 t
(1 row)
openGauss=# SELECT 'abc' LIKE 'a%' AS RESULT;
 result

 t
(1 row)
openGauss=# SELECT 'abc' LIKE '_b_' AS RESULT;
 result

 t
(1 row)
openGauss=# SELECT 'abc' LIKE 'c' AS RESULT;
 result

 f
(1 row)

SIMILAR TO

Description: Returns true or false depending on whether the mode matches the
given string. It is similar to LIKE, but differs in that SIMILAR TO uses the regular
expression understanding mode defined by the SQL standard.

Matching rules:

1. Similar to LIKE, this operator succeeds only when its mode matches the entire
string. If you want to match a sequence in any position within the string, the
mode must begin and end with a percent sign (%).

2. The underscore (_) represents (matches) any single character. The percent
sign (%) indicates the wildcard character of any string.

3. SIMILAR TO supports these mode-matching metacharacters borrowed from
POSIX regular expressions.

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 97

Metacharacter Description

| Specifies alternation (either of two
alternatives).

* Specifies that the previous item is
repeated for zero or more times.

+ Specifies that the previous item is
repeated for one or more times.

? Specifies that the previous item is
repeated for zero or one time.

{m} Specifies that the previous item is
repeated for m times.

{m,} Specifies that the previous item is
repeated for m or more times.

{m,n} Specifies that the previous item is
repeated for at least m times and at
most n times.

() Specifies that parentheses () can be
used to group items into a single
logical item.

[...] Specifies a character class, just as in
POSIX regular expressions.

4. A preamble escape character disables the special meaning of any of these

metacharacters. The rules for using escape characters are the same as those
for using LIKE.

Example:

openGauss=# SELECT 'abc' SIMILAR TO 'abc' AS RESULT;
 result

 t
(1 row)
openGauss=# SELECT 'abc' SIMILAR TO 'a' AS RESULT;
 result

 f
(1 row)
openGauss=# SELECT 'abc' SIMILAR TO '%(b|d)%' AS RESULT;
 result

 t
(1 row)
openGauss=# SELECT 'abc' SIMILAR TO '(b|c)%' AS RESULT;
 result

 f
(1 row)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 98

POSIX Regular Expressions
Description: A regular expression is a character sequence that is an abbreviated
definition of a set of strings (a regular set). If a string is a member of a regular set
described by a regular expression, the string matches the regular expression.
POSIX regular expressions provide more powerful means for mode matching than
the LIKE and SIMILAR TO operators. Table 6-5 lists all available operators for
mode matching using POSIX regular expressions.

Table 6-5 Regular expression matching operators

Operator Description Example

~ Matches a regular
expression, which is
case-sensitive.

'thomas' ~ '.*thomas.*'

~* Matches a regular
expression, which is
case-insensitive.

'thomas' ~* '.*Thomas.*'

!~ Does not match a
regular expression, which
is case-sensitive.

'thomas' !~ '.*Thomas.*'

!~* Does not match a
regular expression, which
is case-sensitive.

'thomas' !~* '.*vadim.*'

Matching rules:

1. Unlike LIKE, a regular expression is allowed to match anywhere within a
string, unless the regular expression is explicitly anchored to the beginning or
end of the string.

2. Besides the metacharacters mentioned above, POSIX regular expressions also
support the following mode matching metacharacters:

Metacharacter Description

^ Specifies the match starting with a
string.

$ Specifies the match at the end of a
string.

. Matches any single character.

Example:

openGauss=# SELECT 'abc' ~ 'Abc' AS RESULT;
result

 f
(1 row)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 99

openGauss=# SELECT 'abc' ~* 'Abc' AS RESULT;
 result

 t
(1 row)
openGauss=# SELECT 'abc' !~ 'Abc' AS RESULT;
 result

 t
(1 row)
openGauss=# SELECT 'abc'!~* 'Abc' AS RESULT;
 result

 f
(1 row)
openGauss=# SELECT 'abc' ~ '^a' AS RESULT;
 result

 t
(1 row)
openGauss=# SELECT 'abc' ~ '(b|d)'AS RESULT;
 result

 t
(1 row)
openGauss=# SELECT 'abc' ~ '^(b|c)'AS RESULT;
 result

 f
(1 row)

Although most regular expression searches can be executed quickly, regular
expressions can still be artificially made up of memory that takes a long time and
any amount of memory. It is not recommended that you accept the regular
expression search mode from a non-secure mode source. If you must do this, you
are advised to add the statement timeout limit. The SIMILAR TO search has the
same security risks, as SIMILAR TO provides many capabilities that are the same
as those of POSIX- style regular expressions. The LIKE search is much simpler than
the other two options. Therefore, it is more secure to accept the non-secure mode
source search.

6.17 Aggregate Functions
● sum(expression)

Description: Specifies the sum of expressions across all input values.
Return type:
Generally, it is the same as the argument data type. In the following cases,
type conversion occurs:
– BIGINT for SMALLINT or INT arguments
– NUMBER for BIGINT arguments
– DOUBLE PRECISION for floating-point arguments
Example:
openGauss=# SELECT SUM(amount) FROM customer_t1;
 sum

 14200
(1 row)

● max(expression)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 100

Description: Specifies the maximum value of expressions across all input
values.
Parameter type: any array, numeric, string, date/time type, or IPv4 and IPv6
addresses (INET and CIDR data types)
Return type: same as the argument data type
Example:
openGauss=# SELECT MAX (c_customer_sk) FROM customer_t1;
 max

 9976
(1 row)

● min(expression)
Description: Specifies the minimum value of expressions across all input
values.
Parameter type: any array, numeric, string, date/time type, or IPv4 and IPv6
addresses (INET and CIDR data types)
Return type: same as the argument data type
Example:
openGauss=# SELECT MIN (c_customer_sk) FROM customer_t1;
min

 3869
(1 row)

● avg(expression)
Description: Specifies the average (arithmetic mean) of all input values.
Return type:
NUMBER for any integer-type argument.
DOUBLE PRECISION for floating-point arguments.
Otherwise, it is the same as the argument data type.
Example:
openGauss=# SELECT AVG(AMOUNT) FROM customer_t1;
 avg

 2366.6666666666666667
(1 row)

● count(expression)
Description: Specifies the number of input rows for which the value of the
expression is NULL.
Return type: BIGINT
Example:
openGauss=# SELECT COUNT(c_customer_id) FROM customer_t1;
 count

 7
(1 row)

● count(*)
Description: Returns the number of input rows.
Return type: BIGINT
Example:

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 101

openGauss=# SELECT COUNT(*) FROM customer_t1;
count

 8
(1 row)

● delta
Description: Returns the difference between the current row and the previous
row.
Parameter: numeric
Return type: numeric

● mode() within group (order by value anyelement)
Description: Returns the value with the highest occurrence frequency in a
column. If multiple values have the same frequency, the smallest value is
returned. The sorting mode is the same as the default sorting mode of the
column type. value is an input parameter and can be of any type.
Return type: same as the argument data type
Example:
openGauss=# select mode() within group (order by value) from (values(1, 'a'), (2, 'b'), (2, 'c'))
v(value, tag);
 mode

 2
(1 row)
openGauss=# select mode() within group (order by tag) from (values(1, 'a'), (2, 'b'), (2, 'c')) v(value,
tag);
 mode

 a
(1 row)

openGauss
Tutoria 6 Simple Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 102

7 Advanced Data Management

7.1 Constraints

7.2 JOIN

7.3 NULL

7.4 UNION Clause

7.5 Aliases

7.6 Indexes

7.7 Batch Processing Mode

7.8 Views

7.9 SCHEMA

7.10 ALTER TABLE Statement

7.11 TRUNCATE TABLE Statement

7.12 Transactions

7.13 Cursors

7.14 Partitioned Tables

7.15 Locks

7.16 Anonymous Blocks

7.17 Triggers

7.18 Stored Procedures

7.19 Materialized Views

7.20 Subqueries

7.21 Permissions

7.22 Functions

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 103

7.1 Constraints
Constraint clauses specify constraints that new or updated rows must satisfy for
an INSERT or UPDATE operation to succeed. If there is any data behavior that
violates the constraints, the behavior is terminated by the constraints.

Constraints can be specified when a table is created (by executing the CREATE
TABLE statement) or after a table is created (by executing the ALTER TABLE
statement).

Constraints can be column-level or table-level. Column-level constraints apply only
to columns, and table-level constraints apply to the entire table.

The common constraints of openGauss are as follows:

● NOT NULL: specifies that a column cannot store NULL values.
● UNIQUE: ensures that the value of a column is unique.
● PRIMARY KEY: functions as the combination of NOT NULL and UNIQUE and

ensures that a column (or the combination of two or more columns) has a
unique identifier to help quickly locate a specific record in a table.

● FOREIGN KEY: ensures the referential integrity for data in one table to match
values in another table.

● CHECK: ensures that values in a column meet specified conditions.

NOT NULL

If no constraint is specified during table creation, the default value is NULL,
indicating that NULL values can be inserted into columns. If you do not want a
column to be set to NULL, you need to define the NOT NULL constraint on the
column to specify that NULL values are not allowed in the column. When you
insert data, if the column contains NULL, an error is reported and the data fails to
be inserted.

NULL does not mean that there is no data. It indicates unknown data.

For example, create the staff table that contains five columns. The NAME and ID
columns cannot be set to NULL.

openGauss=# CREATE TABLE staff(
 ID INT NOT NULL,
 NAME char(8) NOT NULL,
 AGE INT ,
 ADDRESS CHAR(50),
 SALARY REAL
);

Insert data into the staff table. When a NULL value is inserted into the ID column,
the database returns an error.

openGauss=# INSERT INTO staff VALUES (1,'lily',28);
INSERT 0 1
openGauss=# INSERT INTO staff (NAME,AGE) VALUES ('JUCE',28);
ERROR: null value in column "id" violates not-null constraint
DETAIL: Failing row contains (null, JUCE , 28, null, null).

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 104

UNIQUE
The UNIQUE constraint specifies that a group of one or more columns of a table
can contain only unique values.

For the UNIQUE constraint, NULL is not considered equal.

For example, create the staff1 table that contains five columns, where AGE is set
to UNIQUE. Therefore, you cannot add two records with the same age.

openGauss=# CREATE TABLE staff1(
 ID INT NOT NULL,
 NAME char(8) NOT NULL,
 AGE INT NOT NULL UNIQUE ,
 ADDRESS CHAR(50),
 SALARY REAL
);

Insert data into the staff1 table. When two identical data records are inserted into
the AGE column, the database returns an error.

openGauss=# INSERT INTO staff1 VALUES (1,'lily',28);
INSERT 0 1
openGauss=# INSERT INTO staff1 VALUES (2, 'JUCE',28);
ERROR: duplicate key value violates unique constraint "staff1_age_key"
DETAIL: Key (age)=(28) already exists.

PRIMARY KEY
PRIMARY KEY is the unique identifier of each record in a data table. It specifies
that a column or multiple columns in a table can contain only unique (non-
duplicate) and non-NULL values.

PRIMARY KEY is the combination of NOT NULL and UNIQUE. Only one primary
key can be specified for a table.

For example, create the staff2 table where ID indicates the primary key.

openGauss=# CREATE TABLE staff2(
 ID INT PRIMARY KEY ,
 NAME TEXT NOT NULL,
 AGE INT NOT NULL,
 ADDRESS CHAR(50),
 SALARY REAL
);
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "staff2_pkey" for table "staff2"
CREATE TABLE

FOREIGN KEY
The FOREIGN KEY constraint specifies that the value of a column (or a group of
columns) must match the value in a row of another table. Generally, the FOREIGN
KEY constraint in one table points to the UNIQUE KEY constraint in another table.
That is, the referential integrity between two related tables is maintained.

For example, create the staff3 table that contains five columns.

openGauss=# CREATE TABLE staff3(
 ID INT PRIMARY KEY NOT NULL,
 NAME TEXT NOT NULL,
 AGE INT NOT NULL,
 ADDRESS CHAR(50),

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 105

 SALARY REAL
);

Create the DEPARTMENT table and add three columns. The EMP_ID column
indicates the foreign key and it is similar to the ID column of the staff3 table.

openGauss=# CREATE TABLE DEPARTMENT(
 ID INT PRIMARY KEY NOT NULL,
 DEPT CHAR(50) NOT NULL,
 EMP_ID INT references staff3(ID)
);

CHECK
The CHECK constraint specifies an expression producing a Boolean result where
the INSERT or UPDATE operation of new or updated rows can succeed only when
the expression result is TRUE or UNKNOWN; otherwise, an error is thrown and
the database is not altered.

A CHECK constraint specified as a column constraint should reference only the
column's value, while an expression in a table constraint can reference multiple
columns. <>NULL and !=NULL are invalid in an expression. Change them to IS
NOT NULL.

For example, create the staff4 table and add a CHECK constraint to the SALARY
column to ensure that the inserted value is greater than 0.

openGauss=# CREATE TABLE staff4(
 ID INT PRIMARY KEY NOT NULL,
 NAME TEXT NOT NULL,
 AGE INT NOT NULL,
 ADDRESS CHAR(50),
 SALARY REAL CHECK(SALARY > 0)
);
NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index "staff4_pkey" for table "staff4"
CREATE TABLE

Insert data into the staff4 table. When the inserted value of the SALARY column
is not greater than 0, the database reports an error.

openGauss=# INSERT INTO staff4(ID,NAME,AGE,SALARY) VALUES (2, 'JUCE',16,0);
ERROR: new row for relation "staff4" violates check constraint "staff4_salary_check"
DETAIL: N/A

7.2 JOIN
The JOIN clause is used to combine rows in two or more tables based on the
common columns in these tables.

In openGauss, the JOIN clause has five types of join operations.

● CROSS JOIN
● INNER JOIN
● LEFT OUTER JOIN
● RIGHT OUTER JOIN
● FULL OUTER JOIN

table1 and table2 are used as examples to describe different types of join
operations. The table data is as follows:

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 106

openGauss=# SELECT * FROM table1;
 name | city
-------+------
 Joes | BJ
 Lily | BJ
 James | SH
 Grace | SZ
(4 rows)

openGauss=# SELECT * FROM table2;
 id | name | dept
----+-------+-------
 1 | Tommy | IT
 2 | Lily | IT
 3 | Li | sales
 4 | Grace | IT
(4 rows)

CROSS JOIN
CROSS JOIN is a Cartesian product, which refers to any combination of all tuples
in two relations.

For example, perform CROSS JOIN operation on table1 and table2. The result is
as follows:

openGauss=# SELECT * FROM table1 CROSS JOIN table2;
 name | city | id | name | dept
-------+------+----+-------+-------
 Joes | BJ | 1 | Tommy | IT
 Joes | BJ | 2 | Lily | IT
 Joes | BJ | 3 | Li | sales
 Joes | BJ | 4 | Grace | IT
 Lily | BJ | 1 | Tommy | IT
 Lily | BJ | 2 | Lily | IT
 Lily | BJ | 3 | Li | sales
 Lily | BJ | 4 | Grace | IT
 James | SH | 1 | Tommy | IT
 James | SH | 2 | Lily | IT
 James | SH | 3 | Li | sales
 James | SH | 4 | Grace | IT
 Grace | SZ | 1 | Tommy | IT
 Grace | SZ | 2 | Lily | IT
 Grace | SZ | 3 | Li | sales
 Grace | SZ | 4 | Grace | IT
(16 rows)

INNER JOIN
When INNER JOIN is used, if the related columns in two tables meet the join
conditions, data is extracted from the two tables and combined into a new record
to create a result table. That is, in an INNER JOIN query, only the tuples that meet
the conditions can be displayed in the result relation.

INNER JOIN is the most common and default join type.

Example: Query the columns whose name is set to the same value in table1 and
table2.

openGauss=# SELECT * FROM table1 a INNER JOIN table2 b ON a.name = b.name;
 name | city | id | name | dept
-------+------+----+-------+------
 Lily | BJ | 2 | Lily | IT
 Grace | SZ | 4 | Grace | IT
(2 rows)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 107

LEFT OUTER JOIN

In LEFT OUTER JOIN, all tuples in the left table of the keyword are listed. If a
matched tuple can be found in the right table, the content of the matched tuple is
displayed. If no matched tuple is found in the right table, the corresponding tuple
is NULL.

The keyword in the LEFT OUTER JOIN statement is LEFT OUTER JOIN. LEFT
OUTER JOIN indicates that data in the right table must meet the join conditions,
and data in the left table is exported regardless of whether it meets the join
conditions.

Example:

openGauss=# SELECT * FROM table1 a LEFT OUTER JOIN table2 b ON a.name = b.name;
 name | city | id | name | dept
-------+------+----+-------+------
 Joes | BJ | | |
 Lily | BJ | 2 | Lily | IT
 James | SH | | |
 Grace | SZ | 4 | Grace | IT
(4 rows)

RIGHT OUTER JOIN

RIGHT OUTER JOIN is similar to LEFT OUTER JOIN. The difference is that all tuples
in the right table of the keyword are listed and the data in the left table must
meet the join conditions. The data in the right table is exported regardless of
whether it meets the join conditions.

The keyword in the RIGHT OUTER JOIN statement is RIGHT OUTER JOIN.

Example:

openGauss=# SELECT * FROM table1 a RIGHT OUTER JOIN table2 b ON a.name = b.name;
 name | city | id | name | dept
-------+------+----+-------+-------
 Lily | BJ | 2 | Lily | IT
 Grace | SZ | 4 | Grace | IT
 | | 3 | Li | sales
 | | 1 | Tommy | IT
(4 rows)

FULL OUTER JOIN

In FULL OUTER JOIN, tuples in both the left and right tables are output. If no
matched tuple is found, NULL is used.

Example:

openGauss=# SELECT * FROM table1 a FULL OUTER JOIN table2 b ON a.name = b.name;
 name | city | id | name | dept
-------+------+----+-------+-------
 Joes | BJ | | |
 Lily | BJ | 2 | Lily | IT
 James | SH | | |
 Grace | SZ | 4 | Grace | IT
 | | 3 | Li | sales
 | | 1 | Tommy | IT
(6 rows)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 108

7.3 NULL
NULL indicates unknown data. NULL and 0 cannot be compared because they are
not equivalent to each other.

When creating a table, you can specify whether NULL can be stored in a column.
For details, see NOT NULL. This section describes the IS NULL and IS NOT NULL
operators.

Create the customer_t1 table. The data in the table is as follows:

openGauss=# SELECT * FROM customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
 6985 | maps | Joes | | 2200
 9976 | world | James | | 5000
 4421 | Admin | Local | | 3000
(6 rows)

IS NOT NULL

In the WHERE clause, locate the column whose value is NULL.

For example, list the column whose c_customer_id is not set to a null value in the
customer_t1 table.

openGauss=# SELECT * FROM customer_t1 WHERE c_customer_id IS NOT NULL;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | hello | | |
 6985 | maps | Joes | | 2200
 9976 | world | James | | 5000
 4421 | Admin | Local | | 3000
(5 rows)

IS NULL

In the WHERE clause, locate the column whose value is NULL.

For example, list the column whose c_customer_id is set to a null value in the
customer_t1 table.

openGauss=# SELECT * FROM customer_t1 WHERE c_customer_id IS NULL;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | | Grace | |
(1 row)

7.4 UNION Clause
The UNION clause computes the set union of the rows returned by the involved
SELECT statements. The SELECT statement inside the UNION clause must have
the same number of columns, and the values of the columns must have similar

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 109

data types. In addition, the sequence of columns in each SELECT statement must
be the same.

Syntax
● UNION: retains only one value if duplicate values exist in the results.

SELECT column_name(s) FROM table_name1
UNION
SELECT column_name(s) FROM table_name2;

● UNION ALL: displays all results, including duplicate values.
SELECT column_name(s) FROM table_name1
UNION ALL
SELECT column_name(s) FROM table_name2;

Examples

Take table1 and table2 as an example. The table data is as follows:

openGauss=# SELECT * FROM table1;
 name | city
-------+------
 Joes | BJ
 Lily | BJ
 James | SH
 Grace | SZ
(4 rows)

openGauss=# SELECT * FROM table2;
 id | name | dept
----+-------+-------
 1 | Tommy | IT
 2 | Lily | IT
 3 | Li | sales
 4 | Grace | IT
(4 rows)

● UNION
Lists the names of all employees in two tables and retains only one duplicate
value.
openGauss=# SELECT name FROM table1 UNION SELECT name FROM table2;
 name

 Li
 Lily
 James
 Grace
 Joes
 Tommy
(6 rows)

● UNION ALL
Lists the names of all employees in two tables, including duplicate values.
openGauss=# SELECT name FROM table1 UNION ALL SELECT name FROM table2;
 name

 Joes
 Lily
 James
 Grace
 Tommy
 Lily
 Li
 Grace
(8 rows)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 110

7.5 Aliases
SQL can rename a table or a column. The name is the alias of the table or the
column. Aliases are created to improve the readability of table names or column
names. In SQL, AS is used to create an alias.

Syntax
● Column alias syntax

SELECT
{ * | [column [AS] output_name, ...] }
[FROM from_item [, ...]]
[WHERE condition];

● Table alias syntax
SELECT column1, column2....
FROM table_name AS output_name
WHERE [condition];

Parameter Description
● output_name

You may use the AS output_name clause to give an alias for an output
column. The alias is used for displaying the output column. The name, value,
and type keywords can be used as column aliases.

Examples

Use C to indicate the alias of the customer_t1 table to query data in the table.

openGauss=# SELECT c.c_first_name,c.amount FROM customer_t1 AS c;
 c_first_name | amount
--------------+--------
 Grace | 1000
 Grace |
 |
 Joes | 2200
 James | 5000
 Local | 3000
 Lily | 1000
 Lily | 2000
(8 rows)

7.6 Indexes
An index is a pointer to data in a table. The index in a database is very similar to
the index directory in a book.

Indexes are primarily used to enhance database performance (though
inappropriate use can result in database performance deterioration). You are
advised to create indexes on:

● Columns that are often queried
● Join conditions. For a query on joined columns, you are advised to create a

composite index on the columns. For example, for select * from t1 join t2 on

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 111

t1.a=t2.a and t1.b=t2.b, you can create a composite index on columns a and
b in table t1.

● Columns having filter criteria (especially scope criteria) of a WHERE clause
● Columns that are frequently used after ORDER BY, GROUP BY, and DISTINCT

Syntax
● Single-column index

A single-column index is created based on only one column in a table.
CREATE INDEX [[schema_name.]index_name] ON table_name (column_name);

● Composite index
A composite index is created based on multiple columns in a table.
CREATE INDEX [[schema_name.]index_name] ON table_name (column1_name,column2_name,...);

● Unique index
Duplicate values cannot be inserted into a column with a unique index.
CREATE UNIQUE INDEX [[schema_name.]index_name] ON table_name (column_name);

● Local index
A Local index is created on a subset of a table. The subset is defined by a
condition expression.
CREATE INDEX [[schema_name.]index_name] ON table_name (expression);

● Partial index
A partial index contains entries for only a portion of a table, usually a portion
that is more useful for indexing than the rest of the table.
CREATE INDEX [[schema_name.]index_name] ON table_name (column_name)
 [WHERE predicate]

● Index deletion
DROP INDEX index_name;

Parameter Description
● UNIQUE

Creates a unique index. In this way, the system checks whether new values
are unique in the index column. Attempts to insert or update data which
would result in duplicate entries will generate an error.
Currently, only the B-tree index supports unique indexes.

● schema_name
Specifies the schema name.
Value range: an existing schema name

● index_name
Specifies the name of the index to be created. The schema of the index is the
same as that of the table.
Value range: a string. It must comply with the identifier naming convention.

● table_name
Specifies the name of the table for which an index is to be created (optionally
schema-qualified).
Value range: an existing table name

● column_name

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 112

Specifies the name of the column for which an index is to be created.
Multiple columns can be specified if the index method supports multi-column
indexes. A global index supports a maximum of 31 columns, and other
indexes support a maximum of 32 columns.

● expression
Specifies an expression index created based on one or more columns of the
table. The expression index usually must be written with surrounding
parentheses. However, the parentheses can be omitted if the expression has
the form of a function call.
The expression index can be used to obtain fast access to data based on some
transformation of the basic data. For example, an index computed on
upper(col) would allow the WHERE upper(col) = 'JIM' clause to use an
index.
If an expression contains the IS NULL clause, the index for this expression is
invalid. In this case, you are advised to create a partial index.

● WHERE predicate
Creates a partial index. A partial index contains entries for only a portion of a
table, usually a portion that is more useful for indexing than the rest of the
table. For example, if you have a table that contains both billed and unbilled
orders where the unbilled orders take up a small portion of the total table
and yet that is an often used portion, you can improve performance by
creating an index on just that portion. In addition, the WHERE clause with a
UNIQUE constraint can be used to enforce uniqueness over a subset of a
table.
Value range: The predicate expression can only refer to columns of the
underlying table, but it can use all columns, not just the ones being indexed.
Currently, subqueries and aggregate expressions are forbidden in the WHERE
clause.

Examples
-- Create the tpcds.ship_mode_t1 table.

openGauss=# CREATE SCHEMA tpcds;
openGauss=# CREATE TABLE tpcds.ship_mode_t1
(
 SM_SHIP_MODE_SK INTEGER NOT NULL,
 SM_SHIP_MODE_ID CHAR(16) NOT NULL,
 SM_TYPE CHAR(30) ,
 SM_CODE CHAR(10) ,
 SM_CARRIER CHAR(20) ,
 SM_CONTRACT CHAR(20)
) ;

Create a single-column index on the SM_SHIP_MODE_ID column in the
tpcds.ship_mode_t1 table.

openGauss=# CREATE UNIQUE INDEX ds_ship_mode_t1_index0 ON
tpcds.ship_mode_t1(SM_SHIP_MODE_ID);

Create a common unique index on the SM_SHIP_MODE_SK column in the
tpcds.ship_mode_t1 table.

openGauss=# CREATE UNIQUE INDEX ds_ship_mode_t1_index1 ON
tpcds.ship_mode_t1(SM_SHIP_MODE_SK);

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 113

Create an expression index on the SM_CODE column in the tpcds.ship_mode_t1
table.

openGauss=# CREATE INDEX ds_ship_mode_t1_index2 ON tpcds.ship_mode_t1(SUBSTR(SM_CODE,1 ,4));

Create a partial index on the SM_SHIP_MODE_SK column where
SM_SHIP_MODE_SK is greater than 10 in the tpcds.ship_mode_t1 table.

openGauss=# CREATE UNIQUE INDEX ds_ship_mode_t1_index3 ON
tpcds.ship_mode_t1(SM_SHIP_MODE_SK) WHERE SM_SHIP_MODE_SK>10;

Delete the created index.

openGauss=# DROP INDEX tpcds.ds_ship_mode_t1_index2;

7.7 Batch Processing Mode
openGauss supports the execution of SQL statements from text files and provides
the gsql tool to process SQL statements in batches.

Batch processing is recommended in the following scenarios:

● If you run a query repeatedly (for example, daily or weekly), you can set it as
a script to avoid repeated input.

● You can generate a new query from an existing similar query by copying and
editing the script file.

● For multi-line statements or multi-statement sequences, if an error occurs,
you do not need to input all the content again. You only need to edit the
script to correct the error, and then execute it again.

● You can distribute the script to others so that they can also execute the
statements.

● When interactive use is not allowed in some cases, you must use the batch
processing mode.

Syntax
gsql -d dbname -p port -f filename

Parameter Description
● dbname

Specifies the name of the database to connect to.
● port

Specifies the port number of the database server.
● -f filename

Specifies that files are used as the command source instead of interactively-
entered commands. This parameter specifies the path and name of the text
file to be read.

Examples
1. Create the sql.txt file locally. The file content is as follows:

CREATE TABLE customer
(

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 114

 c_customer_sk integer,
 c_customer_id char(5),
 c_first_name char(6),
 c_last_name char(8),
 Amount integer
);

INSERT INTO customer(c_customer_sk, c_customer_id, c_first_name,Amount) VALUES (3769, 'hello',
'Grace', 1000);
INSERT INTO customer (c_customer_sk, c_first_name) VALUES (3769, 'Grace');
INSERT INTO customer (c_customer_sk, c_customer_id, c_first_name) VALUES (3769, 'hello', DEFAULT);
INSERT INTO customer (c_customer_sk, c_customer_id, c_first_name,Amount) VALUES
 (6885, 'maps', 'Joes',2200),
 (4321, 'tpcds', 'Lily',3000),
 (9527, 'world', 'James',5000);

2. Execute the SQL statements in the sql.txt file.
gsql -d postgres -p 21013 -f /home/user/sql.txt

The result is as follows:
CREATE TABLE
INSERT 0 1
INSERT 0 1
INSERT 0 1
INSERT 0 3

7.8 Views
A view is a virtual table, not a base table. A database only stores the definition of
a view and does not store its data. The data is still stored in the original basic
table. If data in the base table changes, the data in the view changes accordingly.
In this sense, a view is like a window through which users can know their
interested data and data changes in the database.

Syntax
● Create a view

CREATE [TEMP | TEMPORARY] VIEW view_name [(column_name [, ...])]
 AS query;

● Delete a view
DROP VIEW view_name ;

Parameter Description
● TEMP | TEMPORARY

Creates a temporary view.
● view_name

Specifies the name of the view to be created. It is optionally schema-qualified.
Value range: a string. It must comply with the identifier naming convention.

● column_name
Specifies an optional list of names to be used for columns of the view. If not
given, the column names are deduced from the query.
Value range: a string. It must comply with the identifier naming convention.

● query
Specifies a SELECT or VALUES statement that will provide the columns and
rows of a view.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 115

Examples

Create the customer_t1 table. The data in the table is as follows:

openGauss=# SELECT * FROM customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
 6985 | maps | Joes | | 2200
 9976 | world | James | | 5000
 4421 | Admin | Local | | 3000
(6 rows)

Create a view in the customer_t1 table. The view selects only several columns
from the customer_t1 table.

openGauss=# CREATE VIEW CUSTOMER_VIEW AS SELECT c_first_name, amount FROM customer_t1;
CREATE VIEW

You can query the CUSTOMER_VIEW view in the same way as querying a table.

openGauss=# SELECT * FROM CUSTOMER_VIEW;

The results are as follows:

c_first_name | amount
--------------+--------
 Grace | 1000
 Grace |
 |
 Joes | 2200
 James | 5000
 Local | 3000
(6 rows)

After using the view, you can delete it to release space.

openGauss=# DROP VIEW CUSTOMER_VIEW;
DROP VIEW

7.9 SCHEMA
Schemas function as models. Schema management allows multiple users to use
the same database without mutual impacts, to organize database objects as
manageable logical groups, and to add third-party applications to the same
schema without causing conflicts.

Each database has one or more schemas. Each schema contains tables and other
types of objects. When a database is initially created, it has a schema named
PUBLIC by default, and all users have the usage permission on the schema. Only
the system administrator and initial users can create functions, stored procedures,
and synonyms in the PUBLIC schema. Other users cannot create the three types of
objects even if they have the create permission. You can group database objects by
schema. A schema is similar to an OS directory but cannot be nested.

The same database object name can be used in different schemas of the same
database without causing conflicts. For example, both a_schema and b_schema
can contain a table named mytable. Users with required permissions can access
objects across multiple schemas of the same database.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 116

When you execute the CREATE USER statement to create a user, the system
creates a schema with the same name as the user in the database where the
statement is executed.

Syntax
● Create a schema.

CREATE SCHEMA schema_name
 [AUTHORIZATION user_name] ;

● Modify a schema.
– Rename a schema.

ALTER SCHEMA schema_name
 RENAME TO new_name;

– Change the owner of a schema.
ALTER SCHEMA schema_name
 OWNER TO new_owner;

● Delete a schema and its objects.
DROP SCHEMA schema_name;

Schemas beginning with pg_temp or pg_toast_temp are for internal use. Do
not delete them. Otherwise, unexpected consequences may be incurred.

Parameter Description
● schema_name

Specifies the schema name.

NO TICE

The name must be unique.
The schema name cannot start with pg_.

Value range: a string. It must comply with the identifier naming convention.
● AUTHORIZATION user_name

Specifies the owner of a schema. If schema_name is not specified,
user_name will be used as the schema name. In this case, user_name can
only be a role name.
Value range: an existing username or role name

● schema_element
Specifies an SQL statement defining an object to be created within a schema.
Currently, only the CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE
PARTITION, CREATE SEQUENCE, CREATE TRIGGER and GRANT clauses are
supported.
Objects created by sub-commands are owned by the user specified by
AUTHORIZATION.

NO TE

If objects in the schema on the current search path are with the same name, specify the
schemas for different objects. You can run the SHOW SEARCH_PATH statement to check
the schemas on the current search path.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 117

Examples
● Create a schema for the user1 user.

Create the user1 user.
openGauss=# CREATE USER user1 IDENTIFIED BY 'XXXXXXXX';
CREATE ROLE

Create a schema based on the username.
openGauss=# CREATE SCHEMA test AUTHORIZATION user1;
CREATE SCHEMA

● Change the name of the test schema to test1.
openGauss=# ALTER SCHEMA test RENAME TO test1;
ALTER SCHEMA

● Change the owner of the schema.
Create the user2 user.
openGauss=# CREATE USER user2 IDENTIFIED BY 'XXXXXXXXX';
CREATE ROLE

Change the owner of the test1 schema to user2.
openGauss=# ALTER SCHEMA test1 OWNER TO user2;
ALTER SCHEMA

● Check the current search path.
openGauss=# SHOW SEARCH_PATH;
 search_path

 "$user",public
(1 row)

● Change the default schema of the current session.
openGauss=# SET SEARCH_PATH TO test1, public;
SET

● Delete the schema and its objects.
openGauss=# DROP SCHEMA test1;
DROP SCHEMA

7.10 ALTER TABLE Statement
The ALTER TABLE statement modifies tables, including modifying table definitions,
renaming tables, renaming specified columns in tables, renaming table constraints,
setting table schemas, enabling or disabling row-level security policies, and adding
or updating multiple columns.

Syntax
● Add a column to an existing table.

ALTER TABLE table_name
 ADD column_name data_type;

● Delete a column from an existing table.
ALTER TABLE table_name DROP COLUMN column_name;

● Change the column type of a table.
ALTER TABLE table_name
 MODIFY column_name data_type;

● Add or delete a NOT NULL constraint to or from a column of an existing
table.
ALTER TABLE table_name
 ALTER column_name { SET | DROP } NOT NULL

● Rename a specified column in a table.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 118

ALTER TABLE table_name RENAME column_name TO new_column_name;

● Update columns.
ALTER TABLE table_name
 MODIFY ({ column_name data_type | column_name [CONSTRAINT constraint_name] NOT NULL
[ENABLE] | column_name [CONSTRAINT constraint_name] NULL } [, ...]);

● Rename a table,which does not affect stored data.
ALTER TABLE table_name
 RENAME TO new_table_name;

Parameter Description
● table_name

Specifies the name of the table to be modified.
If ONLY is specified, only the table is modified. If ONLY is not specified, the
table and all subtables are modified. You can add the asterisk (*) option
following the table name to specify that all subtables are scanned, which is
the default operation.

● column_name
Specifies the name of a new or an existing column.

● data_type
Specifies the type of a new column or a new type of an existing column.

● new_table_name
Specifies the new table name.

● new_column_name
Specifies the new name of a specific column in a table.

● constraint_name
Specifies the name of a constraint.

Examples
The data in the customer_t1 table is as follows:

openGauss=# SELECT * FROM customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
 3869 | hello | | |
 | | | |
 6985 | maps | Joes | | 2200
 9976 | world | James | | 5000
 4421 | Admin | Local | | 3000
 6881 | maps | Lily | | 1000
 4320 | tpcds | Lily | | 2000
(11 rows)

● Add a column.
Add a new column to the preceding table.
openGauss=# ALTER TABLE customer_t1 ADD date time;

The following shows the structure of the customer_t1 table. The date column
is added successfully.
openGauss=# \d customer_t1
 Table "public.customer_t1"

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 119

 Column | Type | Modifiers
---------------+------------------------+-----------
 c_customer_sk | integer |
 c_customer_id | character(5) |
 c_first_name | character(6) |
 c_last_name | character(8) |
 amount | integer |
 date | time without time zone |

● Change the data type of a column.
Change the data type of the c column from character(8) to character(12).
openGauss=# ALTER TABLE customer_t1 MODIFY c_last_name character(12);

Query the structure of the customer_t1 table. The data type of the
c_last_name column is changed successfully.
openGauss=# \d customer_t1
 Table "public.customer_t1"
 Column | Type | Modifiers
---------------+------------------------+-----------
 c_customer_sk | integer |
 c_customer_id | character(5) |
 c_first_name | character(6) |
 c_last_name | character(12) |
 amount | integer |
 date | time without time zone |

● Add a column constraint.
Delete the rows where the c_customer_sk column is empty.
openGauss=# DELETE FROM customer_t1 WHERE c_customer_sk is NULL;

Add a not-null constraint to the c_customer_sk column.
openGauss=# ALTER TABLE customer_t1 ALTER c_customer_sk SET NOT NULL;

Query the structure of the customer_t1 table. The constraint is successfully
added to the c_customer_sk column.
openGauss=# \d customer_t1
 Table "public.customer_t1"
 Column | Type | Modifiers
---------------+------------------------+-----------
 c_customer_sk | integer | not null
 c_customer_id | character(5) |
 c_first_name | character(6) |
 c_last_name | character(12) |
 amount | integer |
 date | time without time zone |

● Change a column name.
Change the column name from date to purchase date.
openGauss=# ALTER TABLE customer_t1 RENAME date TO purchase_date;

Query the structure of the customer_t1 table. The name of the date column
is changed successfully.
openGauss=# \d customer_t1
 Table "public.customer_t1"
 Column | Type | Modifiers
---------------+------------------------+-----------
 c_customer_sk | integer | not null
 c_customer_id | character(5) |
 c_first_name | character(6) |
 c_last_name | character(12) |
 amount | integer |
 purchase_date | time without time zone |

● Delete a column.
Delete the purchase_date column.
openGauss=# ALTER TABLE customer_t1 DROP purchase_date;

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 120

After deletion, the data in the customer_t1 table is as follows:
openGauss=# SELECT * FROM customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
 3869 | hello | | |
 6985 | maps | Joes | | 2200
 9976 | world | James | | 5000
 4421 | Admin | Local | | 3000
 6881 | maps | Lily | | 1000
 4320 | tpcds | Lily | | 2000
(10 rows)

7.11 TRUNCATE TABLE Statement
The TRUNCATE TABLE statement deletes table data but does not delete the table
structure. You can also execute the DROP TABLE statement to delete a table.
However, this statement deletes the table structure together with the table. To
insert data into the table, you need to recreate the table.

It has the same effect as an unqualified DELETE statement on each table, but it is
faster since it does not actually scan the tables. This is most useful on large tables.
In addition, the TRUNCATE TABLE statement immediately releases tablespaces
without requiring subsequent VACUUM operations.

Syntax
TRUNCATE TABLE table_name ;

Parameter Description
● table_name

Specifies the name (optionally schema-qualified) of the target table.
Value range: an existing table name

Examples
Execute the TRUNCATE TABLE statement to delete data from the customer_t1
table.

openGauss=# TRUNCATE TABLE customer_t1;
TRUNCATE TABLE

Query the customer_t1 table. The query result is as follows:

openGauss=# SELECT * FROM customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
(0 rows)

7.12 Transactions
A transaction is a user-defined sequence of database operations, which form an
integral unit of work. In openGauss, you can start, set, commit, and roll back

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 121

transactions. openGauss supports the READ COMMITTED and REPEATABLE READ
transaction isolation levels.

● READ COMMITTED: At this level, a transaction can access only committed
data. This is the default level.
The SELECT statement accesses the snapshot of the database taken when the
query begins. It can also access the data updates in its transaction, regardless
of whether they have been committed. Note that different database
snapshots may be available to two consecutive SELECT statements for the
same transaction, because data may be committed for other transactions
while the first SELECT statement is executed.
At the READ COMMITTED level, the execution of each statement begins with
a new snapshot, which contains all the transactions that have been
committed at the execution time. Therefore, during a transaction, a statement
can access the result of other committed transactions. Note whether a single
statement always accesses absolutely consistent data in a database.
Transaction isolation at this level meets the requirements of many
applications, and is fast and easy to use. However, applications performing
complicated queries and updates may require data that is more consistent
than this level can provide.

● REPEATABLE READ: A transaction can only read data committed before it
starts. Uncommitted data or data committed in other concurrent transactions
cannot be read. However, a query can read earlier data updates in its
transaction, regardless of whether they have been committed. READ
UNCOMMITTED differs from this level in that a transaction reads the
snapshot taken at the start of the transaction, not at the beginning of the
current query within the transaction. Therefore, the SELECT statement within
a transaction always reads the same data, and cannot read data committed
by other concurrent transactions after the transaction starts. Applications at
this level must be able to retry transactions, because serialization failures may
occur.

Syntax
● Start a transaction.

Execute the BEGIN statement to start a transaction.
BEGIN [WORK | TRANSACTION]
 [
 {
 ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE | REPEATABLE READ }
 | { READ WRITE | READ ONLY }
 } [, ...]
];

Execute the START TRANSACTION statement to start a transaction.
START TRANSACTION
 [
 {
 ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE | REPEATABLE READ }
 | { READ WRITE | READ ONLY }
 } [, ...]
];

● Set transaction features.
Use the SET TRANSACTION statement or the syntax to set the isolation level
and read/write mode of a transaction.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 122

{ SET [LOCAL] TRANSACTION|SET SESSION CHARACTERISTICS AS TRANSACTION }
 { ISOLATION LEVEL { READ COMMITTED | SERIALIZABLE | REPEATABLE READ }
 | { READ WRITE | READ ONLY } } [, ...];

● Commit a transaction.
Execute the COMMIT or END statement to commit all operations of a
transaction.
{ COMMIT | END } [WORK | TRANSACTION] ;

● Roll back a transaction.
If a fault occurs during a transaction and the transaction cannot proceed, the
system performs rollback to cancel all the completed database operations
related to the transaction.
ROLLBACK [WORK | TRANSACTION];

Parameter Description
● WORK | TRANSACTION

Specifies the optional keyword in BEGIN format without functions.
● ISOLATION LEVEL

Specifies the transaction isolation level that determines the data that a
transaction can view if other concurrent transactions exist.

NO TE

The isolation level of a transaction cannot be reset after the first clause (SELECT,
INSERT, DELETE, UPDATE, FETCH, or COPY) for modifying data is executed in the
transaction.

Value range:
– READ COMMITTED: Only committed data is read. This is the default.
– REPEATABLE READ: Only the data committed before transaction start is

read. Uncommitted data or data committed in other concurrent
transactions cannot be read.

– SERIALIZABLE: Currently, this isolation level is not supported in functions.
It is equivalent to REPEATABLE READ.

● READ WRITE | READ ONLY
Specifies the transaction access mode (read/write or read only).

● LOCAL
Specifies that the specified statement takes effect only for the current
transaction.

● SESSION
Specifies that the specified statement takes effect for the current session.
Value range: a string. It must comply with the identifier naming convention.

● COMMIT | END
Commits the current transaction and makes all changes made by the
transaction become visible to others.

Examples
Assume that the customer_t1 table exists and contains the following data:

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 123

openGauss=# SELECT * FROM customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3769 | hello | Grace | | 1000
 3769 | | Grace | |
 3769 | hello | | |
 6885 | maps | Joes | | 2200
 4321 | tpcds | Lily | | 3000
 9527 | world | James | | 5000
(6 rows)

Start a transaction, delete the row where amount is set to 1000 from the table,
and execute the ROLLBACK statement to undo all changes.

openGauss=# START TRANSACTION;
openGauss=# DELETE FROM customer_t1 WHERE amount = 1000;
openGauss=# ROLLBACK;

In the customer_t1 table, the row where amount is set to 1000 still exists.

openGauss=# select * from customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3769 | hello | Grace | | 1000
 3769 | | Grace | |
 3769 | hello | | |
 6885 | maps | Joes | | 2200
 4321 | tpcds | Lily | | 3000
 9527 | world | James | | 5000
(6 rows)

Start another transaction, delete the record whose amount is set to 1000 from the
table, and execute the COMMIT command to commit all changes.

-- Start a transaction and set its isolation level to READ COMMITTED and access mode to READ ONLY.
openGauss=# BEGIN;
openGauss=# DELETE FROM customer_t1 WHERE amount = 1000;
openGauss=# COMMIT;

The record whose amount is set to 1000 has been deleted from the customer_t1
table.

openGauss=# select * from customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3769 | | Grace | |
 3769 | hello | | |
 6885 | maps | Joes | | 2200
 4321 | tpcds | Lily | | 3000
 9527 | world | James | | 5000
(5 rows)

7.13 Cursors
To process SQL statements, the stored procedure process assigns a memory
segment to store context association. Cursors are handles or pointers pointing to
context regions. With cursors, stored procedures can control alterations in context
regions.

Syntax
● Define a cursor.

CURSOR cursor_name
 [BINARY] [NO SCROLL] [{ WITH | WITHOUT } HOLD]
 FOR query ;

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 124

● Retrieve data by using a created cursor.
FETCH [direction { FROM | IN }] cursor_name;

The direction clause specifies optional parameters.
NEXT
 | PRIOR
 | FIRST
 | LAST
 | ABSOLUTE count
 | RELATIVE count
 | count
 | ALL
 | FORWARD
 | FORWARD count
 | FORWARD ALL
 | BACKWARD
 | BACKWARD count
 | BACKWARD ALL

● Reposition a cursor without retrieving any data.
The MOVE statement works exactly like the FETCH statement, except that it
only repositions the cursor and does not return rows.
MOVE [direction [FROM | IN]] cursor_name;

The direction clause specifies optional parameters.
NEXT
 | PRIOR
 | FIRST
 | LAST
 | ABSOLUTE count
 | RELATIVE count
 | count
 | ALL
 | FORWARD
 | FORWARD count
 | FORWARD ALL
 | BACKWARD
 | BACKWARD count
 | BACKWARD ALL

● Close a cursor and release all resources associated with the cursor.
CLOSE { cursor_name | ALL } ;

Parameter Description
● cursor_name

Specifies the name of the cursor to be created or closed.
● BINARY

Specifies that data retrieved by a cursor will be returned in binary format, not
in text format.

● NO SCROLL
Specifies how a cursor retrieves rows.
– NO SCROLL: specifies that the cursor cannot be used to retrieve rows in a

nonsequential fashion.
– Unspecified: Based on the query's execution plan, the system

automatically determines whether the cursor can be used to retrieve rows
in a nonsequential fashion.

● WITH HOLD | WITHOUT HOLD
Specifies whether a cursor can be used after the transaction that created it
ends.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 125

– WITH HOLD: The cursor can be used after the transaction that created it
ends.

– WITHOUT HOLD: The cursor cannot be used outside of the transaction
that created it.

– If neither WITH HOLD nor WITHOUT HOLD is specified, the default is
WITHOUT HOLD.

– Cross-node transactions (for example, DDL-contained transactions
created in openGauss with multiple DBnode) do not support WITH
HOLD.

● query
Uses the SELECT or VALUES clause to specify the rows to be returned by a
cursor.
Value range: SELECT or VALUES clause

● direction_clause
Defines the fetch direction.
Value range:
– NEXT (default value)

Fetches the next row.
– PRIOR

Fetches the prior row.
– FIRST

Fetches the first row of the query (same as ABSOLUTE 1).
– LAST

Fetches the last row of the query (same as ABSOLUTE – 1).
– ABSOLUTE count

Fetches the countth row of the query.
ABSOLUTE fetches are not any faster than navigating to the desired row
with a relative move, because the underlying implementation must
traverse all the intermediate rows anyway.
Value range: a possibly-signed integer

▪ If count is positive, the countth row of the query will be fetched.

▪ If count is negative, the abs(count)th row from the end of the query
result will be fetched.

▪ If count is set to 0, the cursor is positioned before the first row.

– RELATIVE count
Fetches the countth succeeding row or the countth prior row.
Value range: a possibly-signed integer

▪ If count is positive, the countth succeeding rows will be fetched.

▪ If count is negative, the abs(count)th prior rows will be fetched.

▪ If the current row contains no data, RELATIVE 0 returns NULL.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 126

– count
Fetches the next count rows (same as FORWARD count).

– ALL
Fetches all remaining rows (same as FORWARD ALL).

– FORWARD
Fetches the next row (same as NEXT).

– FORWARD count
Fetches the count succeeding rows or count prior rows.

– FORWARD ALL
Fetches all remaining rows.

– BACKWARD
Fetches the prior row (same as PRIOR).

– BACKWARD count
Fetches the prior count rows (scanning backwards).
Value range: a possibly-signed integer

▪ If count is positive, the prior count rows will be fetched.

▪ If count is a negative, the succeeding abs (count) rows will be
fetched.

▪ BACKWARD 0 re-fetches the current row, if any.

– BACKWARD ALL
Fetches all prior rows (scanning backwards).

● { FROM | IN } cursor_name
Specifies the cursor name using the keyword FROM or IN.
Value range: an existing cursor name

● ALL
Closes all open cursors.

Examples
Assume that the customer_t1 table exists and contains the following data:

openGauss=# SELECT * FROM customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3769 | | Grace | |
 3769 | hello | | |
 6885 | maps | Joes | | 2200
 4321 | tpcds | Lily | | 3000
 9527 | world | James | | 5000
(5 rows)

● Read a table using a cursor.
-- Start a transaction.
openGauss=# START TRANSACTION;
START TRANSACTION

-- Set up cursor1.
openGauss=# CURSOR cursor1 FOR SELECT * FROM customer_t1;
DECLARE CURSOR

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 127

-- Fetch the first three rows in cursor1.
openGauss=# FETCH FORWARD 3 FROM cursor1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3769 | | Grace | |
 3769 | hello | | |
 6885 | maps | Joes | | 2200
(3 rows)

-- Close the cursor and commit the transaction.
openGauss=# CLOSE cursor1;
CLOSE CURSOR

-- End the transaction.
openGauss=# END;
COMMIT

● Read the VALUES clause using a cursor.
-- Start a transaction.
openGauss=# START TRANSACTION;
START TRANSACTION

-- Set up cursor2.
openGauss=# CURSOR cursor2 FOR VALUES(1,2),(0,3) ORDER BY 1;
DECLARE CURSOR

-- Fetch the first two rows in cursor2.
openGauss=# FETCH FORWARD 2 FROM cursor2;
 column1 | column2
---------+---------
 0 | 3
 1 | 2
(2 rows)

-- Close the cursor and commit the transaction.
openGauss=# CLOSE cursor2;
CLOSE CURSOR

-- End the transaction.
openGauss=# END;
COMMIT

● Use the WITH HOLD cursor.
-- Start a transaction.
openGauss=# START TRANSACTION;

-- Set up the WITH HOLD cursor.
openGauss=# DECLARE cursor1 CURSOR WITH HOLD FOR SELECT * FROM customer_t1;

-- Fetch the first two rows in cursor1.
openGauss=# FETCH FORWARD 2 FROM cursor1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3769 | | Grace | |
 3769 | hello | | |
(2 rows)

-- End the transaction.
openGauss=# END;
COMMIT

-- Fetch the next row in cursor1.
openGauss=# FETCH FORWARD 1 FROM cursor1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 6885 | maps | Joes | | 2200
(1 row)

-- Close the cursor.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 128

openGauss=# CLOSE cursor1;
CLOSE CURSOR

● Use the MOVE statement.
-- Start a transaction.
openGauss=# START TRANSACTION;
START TRANSACTION

-- Define cursor1.
openGauss=# CURSOR cursor1 FOR SELECT * FROM customer_t1;
DECLARE CURSOR

-- Skip the first three rows in cursor1.
openGauss=# MOVE FORWARD 1 FROM cursor1;
MOVE 1

-- Fetch the first two rows in cursor1.
openGauss=# FETCH 2 FROM cursor1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3769 | hello | | |
 6885 | maps | Joes | | 2200
(2 rows)

-- Close the cursor.
openGauss=# CLOSE cursor1;
CLOSE CURSOR

-- End the transaction.
openGauss=# END;
COMMIT

7.14 Partitioned Tables
If a table contains a large amount of data, data query and operation efficiency will
be severely affected. openGauss can logically divide a table into multiple shards to
avoid processing a large amount of data at a time and then improve the
processing efficiency.

openGauss supports the following types of partitioned tables:

● Range partitioned table: One or more columns are divided into multiple
ranges. A partition is created for each range to store data. For example, sales
data can be partitioned by month.

● List partitioned table: Partitions are created based on values in a column.
For example, sales data is divided by sales store.

● Interval partitioned table: It is a special type of range partitions. The interval
value definition is added. If no matched partition is found when a record is
inserted, partitions can be automatically created based on the interval.

● Hash partitioned table: The modulus and remainder are specified for each
partition based on a column of the table, and the records to be inserted into
the table are allocated to the corresponding partitions.

In addition to creating a partitioned table, you can perform the following
operations:

● Querying a partitioned table: Data is queried by partition name or value in
a partition.

● Importing data: Data is imported directly or from an existing table.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 129

● Modifying a partitioned table: Partitions are added, deleted,split, or
combined, or partition names are changed.

● Deleting a partitioned table: The operation is the same as that of deleting a
common table.

Classification of Range Partitioned Tables

Range partitioned tables are classified into the following types:

● VALUES LESS THAN: specifies the partition range based on the upper limit of
each partition. Upper limit of the previous partition ≤ Range of the partition ≤
Upper limit of the current partition.

● START END: Partitioning is performed in the following methods.
– Providing the start point and end point of the partition
– Providing only the start point of the partition
– Providing only the end point of the partition
– Providing the interval value within the range after the start point

and end point of the partition are provided
– Comprehensively using the preceding methods

Syntax for Creating a VALUES LESS THAN Range Partitioned Table
CREATE TABLE partition_table_name
([column_name data_type]
 [, ...]
)
 PARTITION BY RANGE (partition_key)
 (
 PARTITION partition_name VALUES LESS THAN (partition_value | MAXVALUE})
 [, ...]
);

Parameters for Creating a VALUES LESS THAN Range Partitioned Table
● partition_table_name

Specifies the name of the partitioned table.
● column_name

Specifies the name of the column to be created in the new table.
● data_type

Specifies the data type of the column.
● partition_key

Specifies the name of the partition key.
In this case, a maximum of four partition keys are supported.

● partition_name
Specifies the name of a range partition.

● VALUES LESS THAN
Specifies that the value in the partition must be less than the upper limit
value.

● partition_value

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 130

Specifies the upper limit of a range partition, and the value depends on the
type specified by partition_key.

● MAXVALUE
Specifies the upper limit of the last range partition.

Example of Creating a VALUES LESS THAN Range Partitioned Table
Example 1: Create the sales_table range partitioned table. The table has four
partitions and the data type of their partition keys is DATE. The range of the
partition is as follows: sales_date < 2021-04-01, 2021-04-01 ≤ sales_date <
2021-07-01, 2021-07-01 ≤ sales_date < 2021-10-01, and 2021-10-01 ≤ sales_date
< MAXVALUE.
-- Create the sales_table partitioned table.
openGauss=# CREATE TABLE sales_table
(
 order_no INTEGER NOT NULL,
 goods_name CHAR(20) NOT NULL,
 sales_date DATE NOT NULL,
 sales_volume INTEGER,
 sales_store CHAR(20)
)
PARTITION BY RANGE(sales_date)
(
 PARTITION season1 VALUES LESS THAN('2021-04-01 00:00:00'),
 PARTITION season2 VALUES LESS THAN('2021-07-01 00:00:00'),
 PARTITION season3 VALUES LESS THAN('2021-10-01 00:00:00'),
 PARTITION season4 VALUES LESS THAN(MAXVALUE)
);
-- Insert data into the season1 partition.
openGauss=# INSERT INTO sales_table VALUES(1, 'jacket', '2021-01-10 00:00:00', 3,'Alaska');

-- Insert data into the season2 partition.
openGauss=# INSERT INTO sales_table VALUES(2, 'hat', '2021-05-06 00:00:00', 5,'Clolorado');

-- Insert data into the season3 partition.
openGauss=# INSERT INTO sales_table VALUES(3, 'shirt', '2021-09-17 00:00:00', 7,'Florida');

-- Insert data into the season4 partition.
openGauss=# INSERT INTO sales_table VALUES(4, 'coat', '2021-10-21 00:00:00', 9,'Hawaii');

Syntax for Querying a Partitioned Table
SELECT * FROM partition_table_name PARTITION { (partition_name) | FOR (partition_value [, ...]) }

Parameters for Querying a Partitioned Table
● partition_table_name

Specifies the name of the partitioned table.
● partition_name

Specifies the partition name.
● partition_value

Specifies the value of the partition. The partition where the value specified by
the PARTITION FOR clause is located is the partition to be queried.

Syntax for Querying a Partitioned Table
Example 2: Query the sales_table partitioned table created in example 1.
-- Query data in the sales_table table.
openGauss=# SELECT * FROM sales_table;

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 131

 order_no | goods_name | sales_date | sales_volume | sale
s_store
----------+----------------------+---------------------+--------------+---------

 1 | jacket | 2021-01-10 00:00:00 | 3 | Alaska

 2 | hat | 2021-05-06 00:00:00 | 5 | Clolorado

 3 | shirt | 2021-09-17 00:00:00 | 7 | Florida

 4 | coat | 2021-10-21 00:00:00 | 9 | Hawaii

(4 rows)

-- Query the data of the fourth quarter in the sales_table table. sales_table PARTITION (season4) is used
to reference the partition where the data of the fourth quarter is located.
openGauss=# SELECT * FROM sales_table PARTITION (season4);
 order_no | goods_name | sales_date | sales_volume | sales_store
----------+----------------------+---------------------+--------------+----------------------
 4 | coat | 2021-10-21 00:00:00 | 9 | Hawaii
(1 row)

-- Query the data of the first quarter in the sales_table table. sales_table PARTITION FOR ('2021-3-21
00:00:00') is used to reference the partition where the data of the first quarter is located. '2021-3-21
00:00:00' is located in the partition where the data of the first quarter is located.
openGauss=# SELECT * FROM sales_table PARTITION FOR ('2021-3-21 00:00:00');
 order_no | goods_name | sales_date | sales_volume | sales_store
----------+----------------------+---------------------+--------------+----------------------
 1 | jacket | 2021-01-10 00:00:00 | 3 | Alaska
(1 row)

Syntax for Creating a START END Range Partitioned Table
A START END range partitioned table can be created by different methods, and
these methods can be combined within a partitioned table.

● Method 1: By executing START(partition_value) END (partition_value |
MAXVALUE)
CREATE TABLE partition_table_name
([column_name data_type]
 [, ...]
)
 PARTITION BY RANGE (partition_key)
 (
 PARTITION partition_name START(partition_value) END (partition_value | MAXVALUE)
 [, ...]
);

● Method 2: By executing START(partition_value)
CREATE TABLE partition_table_name
([column_name data_type]
 [, ...]
])
 PARTITION BY RANGE (partition_key)
 (
 PARTITION partition_name START(partition_value)
 [, ...]
);

● Method 3: By executing END(partition_value | MAXVALUE)
CREATE TABLE partition_table_name
([column_name data_type]
 [, ...]
])
 PARTITION BY RANGE (partition_key)
 (
 PARTITION partition_name END(partition_value | MAXVALUE)
 [, ...]
);

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 132

● Method 4: By executing START(partition_value) END (partition_value)
EVERY (interval_value)
CREATE TABLE partition_table_name
([column_name data_type]
 [, ...]
])
 PARTITION BY RANGE (partition_key)
 (
 PARTITION partition_name START(partition_value) END (partition_value) EVERY (interval_value)
 [, ...]
);

Parameters for Creating a START END Range Partitioned Table
● partition_table_name

Specifies the name of the partitioned table.
● column_name

Specifies the name of the column to be created in the new table.
● data_type

Specifies the data type of the column.
● partition_key

Specifies the name of the partition key.
In this case, only one partition key is supported.

● partition_name
Specifies the name or prefix of the range partition.
– If the definition is in the START(partition_value) END (partition_value)

EVERY (interval_value) clause and the value of partition_name is p1,
the partition names are p1_1, p1_2, and so on.
For example, if PARTITION p1 START(1) END(4) EVERY(1) is defined,
the generated partitions are [1, 2), [2, 3), and [3, 4), and their names are
p1_1, p1_2, and p1_3. In this case, p1 is a name prefix.

– If the defined statement is in the first place and has START specified, the
range (MINVALUE, START) will be automatically used as the first actual
partition, and its name will be p1_0. The other partitions are then named
p1_1, p1_2, and so on.
For example, if PARTITION p1 START(1), PARTITION p2 START(2) is
defined, generated partitions are (MINVALUE, 1), [1, 2), and [2,
MAXVALUE), and their names will be p1_0, p1_1, and p2. In this case, p1
is a name prefix and p2 is a partition name. MINVALUE indicates the
minimum value.

– In other cases, this parameter specifies the range partition name.
● VALUES LESS THAN

Specifies that the value in the partition must be less than the upper limit
value.

● partition_value
Specifies the endpoint value (start or end point) of the range partition. The
value depends on the type specified by partition_key.

● interval_value
Splits the range specified by [START, END) and specifies the width of each
partition after splitting. If the value of (END-START) cannot be exactly

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 133

divided by the value of EVERY, only the width of the last partition is less than
the value of EVERY.

● MAXVALUE
Specifies the upper limit of the last range partition.

Example of Creating a START END Range Partitioned Table
Example 3: Execute START(partition_value) END (partition_value | MAXVALUE)
to create a START END partitioned table named graderecord. There are three
partitions, and their partition keys are of the INTEGER type. The partition ranges
are as follows: 0 ≤ grade < 60, 60 ≤ grade < 90, and 90 ≤ grade < MAXVALUE.
-- Create the graderecord partitioned table.
openGauss=# CREATE TABLE graderecord
 (
 number INTEGER,
 name CHAR(20),
 class CHAR(20),
 grade INTEGER
)
 PARTITION BY RANGE(grade)
 (
 PARTITION pass START(60) END(90),
 PARTITION excellent START(90) END(MAXVALUE)
);

-- Insert data into the partition.
openGauss=# insert into graderecord values('210101','Alan','21.01',92);
openGauss=# insert into graderecord values('210102','Ben','21.01',62);
openGauss=# insert into graderecord values('210103','Brain','21.01',26);
openGauss=# insert into graderecord values('210204','Carl','21.02',77);
openGauss=# insert into graderecord values('210205','David','21.02',47);
openGauss=# insert into graderecord values('210206','Eric','21.02',97);
openGauss=# insert into graderecord values('210307','Frank','21.03',90);
openGauss=# insert into graderecord values('210308','Gavin','21.03',100);
openGauss=# insert into graderecord values('210309','Henry','21.03',67);
openGauss=# insert into graderecord values('210410','Jack','21.04',75);
openGauss=# insert into graderecord values('210311','Jerry','21.04',60);

-- Query data in the graderecord table.
openGauss=# SELECT * FROM graderecord;
 number | name | class | grade
--------+----------------------+----------------------+-------
 210103 | Brain | 21.01 | 26
 210205 | David | 21.02 | 47
 210102 | Ben | 21.01 | 62
 210204 | Carl | 21.02 | 77
 210309 | Henry | 21.03 | 67
 210410 | Jack | 21.04 | 75
 210311 | Jerry | 21.04 | 60
 210101 | Alan | 21.01 | 92
 210206 | Eric | 21.02 | 97
 210307 | Frank | 21.03 | 90
 210308 | Gavin | 21.03 | 100
(11 rows)

-- Query data in the pass partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (pass);
ERROR: partition "pass" of relation "graderecord" does not exist
The query fails.
The cause is that the defined PARTITION pass START(60) END(90), statement is in the first place and has
START specified. Therefore, the range (MINVALUE, 60) will be automatically used as the first actual
partition, and its name will be pass_0.
The name of the partition with the range of 60 ≤ grade < 90 is pass_1.

-- Query data in the pass_0 partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (pass_0);

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 134

 number | name | class | grade
--------+----------------------+----------------------+-------
 210103 | Brain | 21.01 | 26
 210205 | David | 21.02 | 47
(2 rows)

-- Query data in the pass_1 partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (pass_1);
 number | name | class | grade
--------+----------------------+----------------------+-------
 210102 | Ben | 21.01 | 62
 210204 | Carl | 21.02 | 77
 210309 | Henry | 21.03 | 67
 210410 | Jack | 21.04 | 75
 210311 | Jerry | 21.04 | 60
(5 rows)

-- Query data in the execllent partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (excellent);
 number | name | class | grade
--------+----------------------+----------------------+-------
 210101 | Alan | 21.01 | 92
 210206 | Eric | 21.02 | 97
 210307 | Frank | 21.03 | 90
 210308 | Gavin | 21.03 | 100
(4 rows)

Example 4: Execute START(partition_value) END (partition_value) EVERY
(interval_value) to create a START END range partitioned table named
metro_ride_record. There are seven partitions and their partition keys are of the
INTEGER type. The value of ride_stations_number is less than 21. Every three
stations form a partition.
-- Create the metro_ride_record partitioned table. Record the number of passengers, getting-on and
getting-off stations, and number of stations. A partition is created for every three stations based on the
number of stations.
openGauss=# CREATE TABLE metro_ride_record
 (
 record_number INTEGER,
 name CHAR(20),
 enter_station CHAR(20),
 leave_station CHAR(20),
 ride_stations_number INTEGER
)
 PARTITION BY RANGE(ride_stations_number)
 (
 PARTITION cost START(3) END(21) EVERY (3)
);

-- Insert data into the partition.
openGauss=# insert into metro_ride_record values('120101','Brain','Tung Chung','Tsing Yi',2);
openGauss=# insert into metro_ride_record values('120102','David','Po Lam','Yau Tong',4);
openGauss=# insert into metro_ride_record values('120103','Ben','Yau Ma Tei','Wong Tai Sin',6);
openGauss=# insert into metro_ride_record values('120104','Carl','Tai Wo Hau','Prince Edward',8);
openGauss=# insert into metro_ride_record values('120105','Henry','Admiralty','Lai King',10);
openGauss=# insert into metro_ride_record values('120106','Jack','Chai Wan','Central',12);
openGauss=# insert into metro_ride_record values('120107','Jerry','Central','Tai Wo Hau',14);
openGauss=# insert into metro_ride_record values('120108','Alan','Diamond Hill','Kwai Hing',16);
openGauss=# insert into metro_ride_record values('120109','Eric','Jordan','Shek Kip Mei',18);
openGauss=# insert into metro_ride_record values('120110','Frank','Lok Fu','Sunny Bay',20);

-- Query data in the metro_ride_record table.
openGauss=# SELECT * FROM metro_ride_record;
 record_number | name | enter_station | leave_station | ride_stations_number
---------------+----------------------+----------------------+----------------------+----------------------
 120101 | Brain | Tung Chung | Tsing Yi | 2
 120102 | David | Po Lam | Yau Tong | 4
 120103 | Ben | Yau Ma Tei | Wong Tai Sin | 6
 120104 | Carl | Tai Wo Hau | Prince Edward | 8

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 135

 120105 | Henry | Admiralty | Lai King | 10
 120106 | Jack | Chai Wan | Central | 12
 120107 | Jerry | Central | Tai Wo Hau | 14
 120108 | Alan | Diamond Hill | Kwai Hing | 16
 120109 | Eric | Jordan | Shek Kip Mei | 18
 120110 | Frank | Lok Fu | Sunny Bay | 20
(10 rows)

The defined PARTITION cost START(3) END(21) EVERY (3) statement is in the first place and has START
specified. Therefore, the range (MINVALUE, 3) will be automatically used as the first actual partition, and
its name will be cost_0.
Other partitions are cost_1, ..., and cost_6.

-- Query data in the cost_0 partition of the metro_ride_record table.
openGauss=# SELECT * FROM metro_ride_record PARTITION (cost_0);
 record_number | name | enter_station | leave_station | ride_stations_number
---------------+----------------------+----------------------+----------------------+----------------------
 120101 | Brain | Tung Chung | Tsing Yi | 2
(1 row)

-- Query data in the cost_1 partition of the metro_ride_record table.
openGauss=# SELECT * FROM metro_ride_record PARTITION (cost_1);
 record_number | name | enter_station | leave_station | ride_stations_number
---------------+----------------------+----------------------+----------------------+----------------------
 120102 | David | Po Lam | Yau Tong | 4
(1 row)

-- Query data in the cost_6 partition of the metro_ride_record table.
openGauss=# SELECT * FROM metro_ride_record PARTITION (cost_6);
 record_number | name | enter_station | leave_station | ride_stations_number
---------------+----------------------+----------------------+----------------------+----------------------
 120109 | Eric | Jordan | Shek Kip Mei | 18
 120110 | Frank | Lok Fu | Sunny Bay | 20
(2 rows)

Example 5: Execute START(partition_value) to create a START END range
partitioned table named graderecord. There are three partitions, and their
partition keys are of the INTEGER type. The partition ranges are as follows: 0 ≤
grade < 60, 60 ≤ grade < 90, and 90 ≤ grade < MAXVALUE.
-- Create the graderecord partitioned table.
openGauss=# CREATE TABLE graderecord
 (
 number INTEGER,
 name CHAR(20),
 class CHAR(20),
 grade INTEGER
)
 PARTITION BY RANGE(grade)
 (
 PARTITION pass START(60),
 PARTITION excellent START(90)
);

-- Insert data into the partition.
openGauss=# insert into graderecord values('210101','Alan','21.01',92);
openGauss=# insert into graderecord values('210102','Ben','21.01',62);
openGauss=# insert into graderecord values('210103','Brain','21.01',26);
openGauss=# insert into graderecord values('210204','Carl','21.02',77);
openGauss=# insert into graderecord values('210205','David','21.02',47);
openGauss=# insert into graderecord values('210206','Eric','21.02',97);
openGauss=# insert into graderecord values('210307','Frank','21.03',90);
openGauss=# insert into graderecord values('210308','Gavin','21.03',100);
openGauss=# insert into graderecord values('210309','Henry','21.03',67);
openGauss=# insert into graderecord values('210410','Jack','21.04',75);
openGauss=# insert into graderecord values('210311','Jerry','21.04',60);

-- Query data in the graderecord table.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 136

openGauss=# SELECT * FROM graderecord;
 number | name | class | grade
--------+----------------------+----------------------+-------
 210103 | Brain | 21.01 | 26
 210205 | David | 21.02 | 47
 210102 | Ben | 21.01 | 62
 210204 | Carl | 21.02 | 77
 210309 | Henry | 21.03 | 67
 210410 | Jack | 21.04 | 75
 210311 | Jerry | 21.04 | 60
 210101 | Alan | 21.01 | 92
 210206 | Eric | 21.02 | 97
 210307 | Frank | 21.03 | 90
 210308 | Gavin | 21.03 | 100
(11 rows)

-- Query data in the pass partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (pass);
ERROR: partition "pass" of relation "graderecord" does not exist
The query fails.
The cause is that the defined PARTITION pass START(60), statement is in the first place and has START
specified. Therefore, the range (MINVALUE, 60) will be automatically used as the first actual partition, and
its name will be pass_0.
The name of the partition with the range of 60 ≤ grade < 90 is pass_1.

-- Query data in the pass_0 partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (pass_0);
 number | name | class | grade
--------+----------------------+----------------------+-------
 210103 | Brain | 21.01 | 26
 210205 | David | 21.02 | 47
(2 rows)

-- Query data in the pass_1 partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (pass_1);
 number | name | class | grade
--------+----------------------+----------------------+-------
 210102 | Ben | 21.01 | 62
 210204 | Carl | 21.02 | 77
 210309 | Henry | 21.03 | 67
 210410 | Jack | 21.04 | 75
 210311 | Jerry | 21.04 | 60
(5 rows)

-- Query data in the execllent partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (excellent);
 number | name | class | grade
--------+----------------------+----------------------+-------
 210101 | Alan | 21.01 | 92
 210206 | Eric | 21.02 | 97
 210307 | Frank | 21.03 | 90
 210308 | Gavin | 21.03 | 100
(4 rows)

Example 6: Execute END(partition_value | MAXVALUE) to create a START END
range partitioned table named graderecord. There are three partitions, and their
partition keys are of the INTEGER type. The partition ranges are as follows: 0 ≤
grade < 60, 60 ≤ grade < 90, and 90 ≤ grade < MAXVALUE.
-- Create the graderecord partitioned table.
openGauss=# CREATE TABLE graderecord
 (
 number INTEGER,
 name CHAR(20),
 class CHAR(20),
 grade INTEGER
)
 PARTITION BY RANGE(grade)
 (

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 137

 PARTITION no_pass END(60),
 PARTITION pass END(90),
 PARTITION excellent END(MAXVALUE)
);

-- Insert data into the partition.
openGauss=# insert into graderecord values('210101','Alan','21.01',92);
openGauss=# insert into graderecord values('210102','Ben','21.01',62);
openGauss=# insert into graderecord values('210103','Brain','21.01',26);
openGauss=# insert into graderecord values('210204','Carl','21.02',77);
openGauss=# insert into graderecord values('210205','David','21.02',47);
openGauss=# insert into graderecord values('210206','Eric','21.02',97);
openGauss=# insert into graderecord values('210307','Frank','21.03',90);
openGauss=# insert into graderecord values('210308','Gavin','21.03',100);
openGauss=# insert into graderecord values('210309','Henry','21.03',67);
openGauss=# insert into graderecord values('210410','Jack','21.04',75);
openGauss=# insert into graderecord values('210311','Jerry','21.04',60);

-- Query data in the graderecord table.
openGauss=# SELECT * FROM graderecord;
 number | name | class | grade
--------+----------------------+----------------------+-------
 210103 | Brain | 21.01 | 26
 210205 | David | 21.02 | 47
 210102 | Ben | 21.01 | 62
 210204 | Carl | 21.02 | 77
 210309 | Henry | 21.03 | 67
 210410 | Jack | 21.04 | 75
 210311 | Jerry | 21.04 | 60
 210101 | Alan | 21.01 | 92
 210206 | Eric | 21.02 | 97
 210307 | Frank | 21.03 | 90
 210308 | Gavin | 21.03 | 100
(11 rows)

-- Query data in the no_pass partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (no_pass);
 number | name | class | grade
--------+----------------------+----------------------+-------
 210103 | Brain | 21.01 | 26
 210205 | David | 21.02 | 47
(2 rows)

-- Query data in the pass partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (pass);
 number | name | class | grade
--------+----------------------+----------------------+-------
 210102 | Ben | 21.01 | 62
 210204 | Carl | 21.02 | 77
 210309 | Henry | 21.03 | 67
 210410 | Jack | 21.04 | 75
 210311 | Jerry | 21.04 | 60
(5 rows)

-- Query data in the execllent partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (excellent);
 number | name | class | grade
--------+----------------------+----------------------+-------
 210101 | Alan | 21.01 | 92
 210206 | Eric | 21.02 | 97
 210307 | Frank | 21.03 | 90
 210308 | Gavin | 21.03 | 100
(4 rows)

Syntax for Creating a List Partitioned Table
CREATE TABLE partition_table_name
([column_name data_type]

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 138

 [, ...]
)
 PARTITION BY LIST (partition_key)
 (
 PARTITION partition_name VALUES (list_values_clause)
 [, ...]
);

Parameters for Creating a List Partitioned Table
● partition_table_name

Specifies the name of the partitioned table.
● column_name

Specifies the name of the column to be created in the new table.
● data_type

Specifies the data type of the column.
● partition_key

Specifies the name of the partition key.
The list partitioning policy supports only one column of partition keys.

● partition_name
Specifies the name of a range partition.

● list_values_clause
There are one or more key values of the corresponding partition. Use commas
(,) to separate multiple key values.

● VALUES (DEFAULT)
If the added data contains key values that are not listed in list_values_clause,
the data is stored in the partition corresponding to VALUES (DEFAULT).

● MAXVALUE
Specifies the upper limit of the last range partition.

Example of Creating a List Partitioned Table
Example 7: Create the graderecord list partitioned table. There are four partitions,
and their partition keys are of the CHAR type. The partition ranges are 21.01,
21.02, 21.03, and 21.04.
-- Create the graderecord partitioned table.
openGauss=# CREATE TABLE graderecord
 (
 number INTEGER,
 name CHAR(20),
 class CHAR(20),
 grade INTEGER
)
 PARTITION BY LIST(class)
 (
 PARTITION class_01 VALUES ('21.01'),
 PARTITION class_02 VALUES ('21.02'),
 PARTITION class_03 VALUES ('21.03'),
 PARTITION class_04 VALUES ('21.04')
);

-- Insert data into the partition.
openGauss=# insert into graderecord values('210101','Alan','21.01',92);
openGauss=# insert into graderecord values('210102','Ben','21.01',62);
openGauss=# insert into graderecord values('210103','Brain','21.01',26);

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 139

openGauss=# insert into graderecord values('210204','Carl','21.02',77);
openGauss=# insert into graderecord values('210205','David','21.02',47);
openGauss=# insert into graderecord values('210206','Eric','21.02',97);
openGauss=# insert into graderecord values('210307','Frank','21.03',90);
openGauss=# insert into graderecord values('210308','Gavin','21.03',100);
openGauss=# insert into graderecord values('210309','Henry','21.03',67);
openGauss=# insert into graderecord values('210410','Jack','21.04',75);
openGauss=# insert into graderecord values('210311','Jerry','21.04',60);

-- Query data in the graderecord table.
openGauss=# SELECT * FROM graderecord;
 number | name | class | grade
--------+----------------------+----------------------+-------
 210410 | Jack | 21.04 | 75
 210311 | Jerry | 21.04 | 60
 210307 | Frank | 21.03 | 90
 210308 | Gavin | 21.03 | 100
 210309 | Henry | 21.03 | 67
 210204 | Carl | 21.02 | 77
 210205 | David | 21.02 | 47
 210206 | Eric | 21.02 | 97
 210101 | Alan | 21.01 | 92
 210102 | Ben | 21.01 | 62
 210103 | Brain | 21.01 | 26
(11 rows)

-- Query data in the class_01 partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (class_01);
 number | name | class | grade
--------+----------------------+----------------------+-------
 210101 | Alan | 21.01 | 92
 210102 | Ben | 21.01 | 62
 210103 | Brain | 21.01 | 26
(3 rows)

-- Query data in the class_04 partition of the graderecord table.
openGauss=# SELECT * FROM graderecord PARTITION (class_04);
 number | name | class | grade
--------+----------------------+----------------------+-------
 210410 | Jack | 21.04 | 75
 210311 | Jerry | 21.04 | 60
(2 rows)

Syntax for Creating an Interval Partitioned Table

Interval partitioning adds the definition of the interval value PARTITION BY
RANGE (partition_key) on the basis of range partitioning.

The syntax of the VALUES LESS THAN interval partition is as follows:

CREATE TABLE partition_table_name
([column_name data_type]
 [, ...]
)
 PARTITION BY RANGE (partition_key)
 (
 INTERVAL ('interval_expr')
 PARTITION partition_name VALUES LESS THAN (partition_value | MAXVALUE})
 [, ...]
);

The syntax for creating a START END interval partitioned table is as follows:

Method 1: By executing START(partition_value) END (partition_value |
MAXVALUE)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 140

CREATE TABLE partition_table_name
([column_name data_type]
 [, ...]
)
 PARTITION BY RANGE (partition_key)
 (
 INTERVAL ('interval_expr')
 PARTITION partition_name START(partition_value) END (partition_value | MAXVALUE)
 [, ...]
);

Method 2: By executing START(partition_value) END (partition_value) EVERY
(interval_value)

CREATE TABLE partition_table_name
([column_name data_type]
 [, ...]
])
 PARTITION BY RANGE (partition_key)
 (
 PARTITION partition_name START(partition_value) END (partition_value) EVERY (interval_value)
 [, ...]
);

Method 3: By executing START(partition_value)

CREATE TABLE partition_table_name
([column_name data_type]
 [, ...]
])
 PARTITION BY RANGE (partition_key)
 (
 INTERVAL ('interval_expr')
 PARTITION partition_name START(partition_value)
 [, ...]
);

Mwthod 4: By executing END(partition_value | MAXVALUE)

CREATE TABLE partition_table_name
([column_name data_type]
 [, ...]
])
 PARTITION BY RANGE (partition_key)
 INTERVAL ('interval_expr')
 (
 PARTITION partition_name END(partition_value | MAXVALUE)
 [, ...]
);

Parameters for Creating an Interval Partitioned Table
● INTERVAL ('interval_expr')

Defines interval partitioning. Only the TIMESTAMP[(p)] [WITHOUT TIME
ZONE], TIMESTAMP[(p)] [WITH TIME ZONE] and DATE data types are
supported.

● interval_expr
Specifies the interval for automatically creating partitions, for example, 1 day
or 1 month.

● partition_name
Specifies the name of a range partition.
The partitions automatically created by the system are named sys_p1, sys_p2,
sys_p3, and the like.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 141

Syntax for Creating an Interval Partitioned Table

Example 8: Creating the sales_table interval partitioned table.

-- Create the sales_table partitioned table.
openGauss=# CREATE TABLE sales_table
(
 order_no INTEGER NOT NULL,
 goods_name CHAR(20) NOT NULL,
 sales_date DATE NOT NULL,
 sales_volume INTEGER,
 sales_store CHAR(20)
)
PARTITION BY RANGE(sales_date)
 INTERVAL ('1 month')
 (
 PARTITION start VALUES LESS THAN('2021-01-01 00:00:00'),
 PARTITION later VALUES LESS THAN('2021-01-10 00:00:00')
);
-- Insert data into the later partition.
openGauss=# INSERT INTO sales_table VALUES(1, 'jacket', '2021-01-8 00:00:00', 3,'Alaska');

-- If you do not insert data into existing partitions, the system creates the sys_p1 partition.
openGauss=# INSERT INTO sales_table VALUES(2, 'hat', '2021-04-06 00:00:00', 255,'Clolorado');

-- If you do not insert data into existing partitions, the system creates the sys_p2 partition.
openGauss=# INSERT INTO sales_table VALUES(3, 'shirt', '2021-11-17 00:00:00', 7000,'Florida');

-- Insert data into the start partition.
openGauss=# INSERT INTO sales_table VALUES(4, 'coat', '2020-10-21 00:00:00', 9000,'Hawaii');

-- Query data in the sales_table table.
openGauss=# SELECT * FROM sales_table;
 order_no | goods_name | sales_date | sales_volume | sales_store
----------+----------------------+---------------------+--------------+----------------------
 4 | coat | 2020-10-21 00:00:00 | 9000 | Hawaii
 1 | jacket | 2021-01-08 00:00:00 | 3 | Alaska
 2 | hat | 2021-04-06 00:00:00 | 255 | Clolorado
 3 | shirt | 2021-11-17 00:00:00 | 7000 | Florida
(4 rows)

-- Query data in the start partition of the sales_table table. In this example, sales_table PARTITION
(start); is used to reference partitions.
openGauss=# SELECT * FROM sales_table PARTITION (start);
 order_no | goods_name | sales_date | sales_volume | sales_store
----------+----------------------+---------------------+--------------+----------------------
 4 | coat | 2020-10-21 00:00:00 | 9000 | Hawaii
(1 row)

-- Query data in the later partition of the sales_table table. In this example, sales_table PARTITION
(later); is used to reference partitions.
openGauss=# SELECT * FROM sales_table PARTITION (later);
 order_no | goods_name | sales_date | sales_volume | sales_store
----------+----------------------+---------------------+--------------+----------------------
 1 | jacket | 2021-01-08 00:00:00 | 3 | Alaska
(1 row)

-- Query data in the sys_p1 partition of the sales_table table. In this example, sales_table PARTITION
(sys_p1); is used to reference partitions.
openGauss=# SELECT * FROM sales_table PARTITION (sys_p1);
 order_no | goods_name | sales_date | sales_volume | sales_store
----------+----------------------+---------------------+--------------+----------------------
 2 | hat | 2021-04-06 00:00:00 | 255 | Clolorado
(1 row)

-- Query data in the sys_p2 partition of the sales_table table. In this example, sales_table PARTITION
(sys_p2); is used to reference partitions.
openGauss=# SELECT * FROM sales_table PARTITION (sys_p2);
 order_no | goods_name | sales_date | sales_volume | sales_store

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 142

----------+----------------------+---------------------+--------------+----------------------
 3 | shirt | 2021-11-17 00:00:00 | 7000 | Florida
(1 row)

Syntax for Creating a Hash Partitioned Table
CREATE TABLE partition_table_name
([column_name data_type]
 [, ...]
)
 PARTITION BY HASH (partition_key)
 (PARTITION partition_name)
 [, ...]
);

Parameters for Creating a Hash Partitioned Table
● partition_table_name

Specifies the name of the partitioned table.
● column_name

Specifies the name of the column to be created in the new table.
● data_type

Specifies the data type of the column.
● partition_key

Specifies the name of the partition key. The hash partitioning policy supports
only one column of partition keys.

● partition_name
Specifies the name of a hash partition. The number of hash partitions to be
created is the same as the number of partition names.

Example of Creating a Hash Partitioned Table
Example 9: Create the hash_partition_table hash partitioned table.

-- Create the hash_partition_table hash partitioned table.
openGauss=# create table hash_partition_table (
col1 int,
col2 int)
partition by hash(col1)
(
partition p1,
partition p2
);

-- Insert data.
openGauss=# INSERT INTO hash_partition_table VALUES(1, 1);
INSERT 0 1
openGauss=# INSERT INTO hash_partition_table VALUES(2, 2);
INSERT 0 1
openGauss=# INSERT INTO hash_partition_table VALUES(3, 3);
INSERT 0 1
openGauss=# INSERT INTO hash_partition_table VALUES(4, 4);
INSERT 0 1

-- View the data.
openGauss=# select * from hash_partition_table partition (p1);
 col1 | col2
------+------
 3 | 3
 4 | 4

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 143

(2 rows)

openGauss=# select * from hash_partition_table partition (p2);
 col1 | col2
------+------
 1 | 1
 2 | 2
(2 rows)

Syntax for Importing Data
Import a single row of data.

INSERT INTO partition_table_name [(column_name [, ...])] VALUES [(value)[, ...]];

Import data from an existing table with the same structure.
INSERT INTO partition_table_name SELECT * FROM source_table_name

Parameters for Importing Data
● partition_table_name

Specifies the name of the partitioned table.
● column_name

Specifies a column name in the partitioned table. It can be omitted.
● value

Specifies column values.
– If the value of column_name is provided, the value provided by the

value clause is associated with the corresponding column from left to
right.

– If the value of column_name is not provided, the value provided by the
value clause is associated with the column specified by
partition_table_name from left to right.

Example of Importing Data
Example 10:

-- Create the employees_table partitioned table.
openGauss=# CREATE TABLE employees_table
(
 employee_id INTEGER NOT NULL,
 employee_name CHAR(20) NOT NULL,
 onboarding_date DATE NOT NULL,
 position CHAR(20)
)
PARTITION BY RANGE(onboarding_date)
(
 PARTITION founders VALUES LESS THAN('2000-01-01 00:00:00'),
 PARTITION senate VALUES LESS THAN('2010-01-01 00:00:00'),
 PARTITION seniors VALUES LESS THAN('2020-01-01 00:00:00'),
 PARTITION newcomer VALUES LESS THAN(MAXVALUE)
);

-- Insert data into the founders partition.
openGauss=# INSERT INTO employees_table VALUES(1, 'SMITH', '1997-01-10 00:00:00','Manager');

-- View data in the founders partition.
openGauss=# select * from employees_table partition (founders);

-- Create the employees_data_table table.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 144

openGauss=# CREATE TABLE employees_data_table
(
 employee_id INTEGER NOT NULL,
 employee_name CHAR(20) NOT NULL,
 onboarding_date DATE NOT NULL,
 position CHAR(20)
);
-- Insert data.
openGauss=# insert into employees_data_table (employee_id, employee_name, onboarding_date, position)
VALUES
(2, 'JONES', '2001-05-06 00:00:00', 'Supervisor'),
(3, 'WILLIAMS', '2011-09-17 00:00:00', 'Engineer'),
(4, 'TAYLOR', '2021-10-21 00:00:00', 'Clerk');

-- View table data.
openGauss=# select * from employees_data_table;

-- Import data to the employees_table table.
openGauss=# INSERT INTO employees_table SELECT * FROM employees_data_table;

-- View data in the senate partition.
openGauss=# select * from employees_table partition (senate);
 employee_id | employee_name | onboarding_date | position
-------------+----------------------+---------------------+----------------------
 2 | JONES | 2001-05-06 00:00:00 | Supervisor
(1 row)

-- View data in the seniors partition.
openGauss=# select * from employees_table partition (seniors);
 employee_id | employee_name | onboarding_date | position
-------------+----------------------+---------------------+----------------------
 3 | WILLIAMS | 2011-09-17 00:00:00 | Engineer
(1 row)

-- View data in the newcomer partition.
openGauss=# select * from employees_table partition (newcomer);
 employee_id | employee_name | onboarding_date | position
-------------+----------------------+---------------------+----------------------
 4 | TAYLOR | 2021-10-21 00:00:00 | Clerk
(1 row)

Syntax for Modifying a Partitioned Table
● Delete a partition.

ALTER TABLE partition_table_name DROP PARTITION partition_name;

● Add a partition.
ALTER TABLE partition_table_name ADD {partition_less_than_item | partition_start_end_item|
partition_list_item };

● Rename a partition.
ALTER TABLE partition_table_name RENAME PARTITION partition_name TO partition_new_name;

● Split a partition (Specify the syntax of split_partition_value).
ALTER TABLE partition_table_name SPLIT PARTITION partition_name AT (split_partition_value) INTO
(PARTITION partition_new_name1, PARTITION partition_new_name2);

● Split a partition (Specify the syntax of the partition range).
ALTER TABLE partition_table_name SPLIT PARTITION partition_name INTO
{ (partition_less_than_item [, ...]) | (partition_start_end_item [, ...]) };

● Combine partitions.
ALTER TABLE partition_table_name MERGE PARTITIONS { partition_name } [, ...] INTO PARTITION
partition_name;

Parameters for Modifying a Partitioned Table
● partition_table_name

Specifies the name of the partitioned table.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 145

● partition_name
Specifies the partition name.

● split_partition_value
Specifies the split point.

● PARTITION partition_new_name1, PARTITION partition_new_name2
Specifies the two partitions that are split based on the split point.

● partition_less_than_item
Specifies the description statement of a partition item. The syntax is as
follows:
PARTITION partition_name VALUES LESS THAN ({ partition_value | MAXVALUE } [, ...])

The usage is the same as that in Syntax for Creating a VALUES LESS THAN
Range Partitioned Table.

● partition_start_end_item
Specifies the description statement of a partition item. The syntax is as
follows:
PARTITION partition_name {
 {START(partition_value) END (partition_value) EVERY (interval_value)} |
 {START(partition_value) END ({partition_value | MAXVALUE})} |
 {START(partition_value)} |
 {END({partition_value | MAXVALUE})}

The usage is the same as that in Syntax for Creating a START END Range
Partitioned Table.

● partition_list_item
Specifies the description statement of a partition item. The syntax is as
follows:
PARTITION partition_name VALUES (list_values_clause)

The usage is the same as that in Syntax for Creating a List Partitioned
Table.

● split_point_clause
Specifies the split point when a partition is split.

● partition_value
Specifies the key value of a partition.

Example of Modifying a Partitioned Table
Example 11:

-- Create the employees_table partitioned table.
openGauss=# CREATE TABLE employees_table
(
 employee_id INTEGER NOT NULL,
 employee_name CHAR(20) NOT NULL,
 onboarding_date DATE NOT NULL,
 position CHAR(20)
)
PARTITION BY RANGE(onboarding_date)
(
 PARTITION founders VALUES LESS THAN('2000-01-01 00:00:00'),
 PARTITION senate VALUES LESS THAN('2010-01-01 00:00:00'),
 PARTITION seniors VALUES LESS THAN('2020-01-01 00:00:00'),
 PARTITION newcomer VALUES LESS THAN(MAXVALUE)
);

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 146

-- Insert data.
openGauss=# INSERT INTO employees_table VALUES
(1, 'SMITH', '1997-01-10 00:00:00','Manager'),
(2, 'JONES', '2001-05-06 00:00:00', 'Supervisor'),
(3, 'WILLIAMS', '2011-09-17 00:00:00', 'Engineer'),
(4, 'TAYLOR', '2021-10-21 00:00:00', 'Clerk');

View the newcomer partition.
openGauss=# SELECT * FROM employees_table PARTITION (newcomer);
 employee_id | employee_name | onboarding_date | position
-------------+----------------------+---------------------+----------------------
 4 | TAYLOR | 2021-10-21 00:00:00 | Clerk
(1 row)

-- Delete the newcomer partition.
openGauss=# ALTER TABLE employees_table DROP PARTITION newcomer;
ALTER TABLE

-- View data in the newcomer partition.
openGauss=# select * from employees_table partition (newcomer);
ERROR: partition "newcomer" of relation "employees_table" does not exist

-- Add the fresh partition.
openGauss=# ALTER TABLE employees_table ADD PARTITION fresh VALUES LESS THAN ('2040-01-01
00:00:00');
ALTER TABLE

-- Use 2030-01-01 00:00:00 as the split point to split the fresh partition into the current and future
partitions.
openGauss=# ALTER TABLE employees_table SPLIT PARTITION fresh AT ('2030-01-01 00:00:00') INTO
(PARTITION current, PARTITION future);
ALTER TABLE

-- Change the name of the current partition to now.
openGauss=# ALTER TABLE employees_table RENAME PARTITION current TO now;
ALTER TABLE

-- Combine the founders and senate partitions into the original partition.
openGauss=# ALTER TABLE employees_table MERGE PARTITIONS founders, senate INTO PARTITION
original;

Syntax for Deleting a Partitioned Table
DROP TABLE partition_table_name;

Parameters for Deleting a Partitioned Table
● partition_table_name

Specifies the name of the partitioned table.

Example of Deleting a Partitioned Table

Example 12:

-- Delete the employees_table partitioned table.
openGauss=# DROP TABLE employees_table;
DROP TABLE

7.15 Locks
To ensure database data consistency, you can execute the LOCK TABLE statement
to prevent other users from modifying tables.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 147

For example, an application needs to ensure that data in a table is not modified
during transaction running. For this purpose, table usage can be locked. This
prevents data from being concurrently modified.

The LOCK TABLE statement is useless outside a transaction block, because the lock
would remain held only to the completion of the statement.

Syntax
LOCK [TABLE] name IN lock_mode MODE

Parameter Description
● name

Specifies the name of the table to be locked.
● lock_mode

Specifies the lock mode. The basic modes are as follows:
– ACCESS EXCLUSIVE

Guarantees that the holder is the only transaction accessing the table in
any way. It is the default lock mode.

– ACCESS SHARE
Indicates the lock mode for reading tables without modifying them.

Examples

Obtains an ACCESS EXCLUSIVE lock on a table when going to perform a delete
operation.

-- Create a sample table.
openGauss=# CREATE TABLE graderecord
 (
 number INTEGER,
 name CHAR(20),
 class CHAR(20),
 grade INTEGER
);
-- Insert data.
openGauss=# insert into graderecord values('210101','Alan','21.01',92);
insert into graderecord values('210102','Ben','21.01',62);
insert into graderecord values('210103','Brain','21.01',26);
insert into graderecord values('210204','Carl','21.02',77);
insert into graderecord values('210205','David','21.02',47);
insert into graderecord values('210206','Eric','21.02',97);
insert into graderecord values('210307','Frank','21.03',90);
insert into graderecord values('210308','Gavin','21.03',100);
insert into graderecord values('210309','Henry','21.03',67);
insert into graderecord values('210410','Jack','21.04',75);
insert into graderecord values('210311','Jerry','21.04',60);

-- Start the process.
openGauss=# START TRANSACTION;

-- Provide the example table.
openGauss=# LOCK TABLE graderecord IN ACCESS EXCLUSIVE MODE;

-- Delete the example table.
openGauss=# DELETE FROM graderecord WHERE name ='Alan';

openGauss=# COMMIT;

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 148

7.16 Anonymous Blocks
An anonymous block is one of the character blocks of a stored procedure and has
no name. It is generally used for scripts or activities that are not executed
frequently.

Syntax

Figure 7-1 shows the syntax diagram for an anonymous block.

Figure 7-1 anonymous_block::=

Details about the syntax diagram are as follows:

● The execution section of an anonymous block starts with a BEGIN statement,
has a break with an END statement, and ends with a semicolon (;). Type a
slash (/) and press Enter to execute the statement.

NO TICE

The terminator "/" must be written in an independent row.

● The declaration section includes the variable definition, type, and cursor
definition.

● A simplest anonymous block does not execute any commands. At least one
statement, even a NULL statement, must be presented in any implementation
blocks.

Parameter Description
● DECLARE

Specifies an optional keyword used to begin a DECLARE statement. This
keyword can be used to declare a data type, variable, or cursor. The use of
this keyword depends on the context in which the block is located.

● declaration_statements
Specifies the declaration of a data type, variable, cursor, exception, or
procedure whose scope is limited to the block. Each declaration must be
terminated with a semicolon (;).

● BEGIN

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 149

Specifies the mandatory keyword for introducing an executable section. The
section can contain one or more SQL or PL/SQL statements. A BEGIN-END
block can contain nested BEGIN-END blocks.

● execution_statements
Specifies PL/SQL or SQL statements. Each statement must be terminated with
a semicolon (;).

● END
Specifies the required keyword for ending a block.

Examples
-- Create a null statement block.
openGauss=# BEGIN
 NULL;
END;
/

-- Create a demonstration table.
openGauss=# CREATE TABLE table1(id1 INT, id2 INT, id3 INT);
CREATE TABLE

-- Use an anonymous block to insert data.
openGauss=# BEGIN
 insert into table1 values(1,2,3);
 END;
 /
ANONYMOUS BLOCK EXECUTE

-- Query the inserted data.
openGauss=# select * from table1;
 id1 | id2 | id3
-----+-----+-----
 1 | 2 | 3
(1 rows)

7.17 Triggers
A trigger automatically executes functions when an event occurs in a specified
database.

Syntax
● Create a trigger.

CREATE TRIGGER trigger_name { BEFORE | AFTER | INSTEAD OF } { event [OR ...] }
 ON table_name
 [FOR [EACH] { ROW | STATEMENT }]
 [WHEN (condition)]
 EXECUTE PROCEDURE function_name (arguments);

● Modify a trigger.
ALTER TRIGGER trigger_name ON table_name RENAME TO new_trigger_name;

● Delete a trigger.
DROP TRIGGER trigger_name ON table_name [CASCADE | RESTRICT];

Parameter Description
● trigger_name

Specifies the trigger name.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 150

● BEFORE
Specifies that a trigger function is executed before the trigger event.

● AFTER
Specifies that a trigger function is executed after the trigger event.

● INSTEAD OF
Specifies that a trigger function directly replaces the trigger event.

● event
Specifies the event that will fire the trigger. Values are INSERT, UPDATE,
DELETE, and TRUNCATE. Multiple events can be specified using OR.

● table_name
Specifies the name of the table corresponding to the trigger.

● FOR EACH ROW | FOR EACH STATEMENT
Specifies the frequency of firing the trigger.
– FOR EACH ROW indicates that the trigger should be fired once for every

row affected by the trigger event.
– FOR EACH STATEMENT indicates that the trigger should be fired just

once per SQL statement.
If neither is specified, the default value is FOR EACH STATEMENT. Constraint
triggers can only be marked as FOR EACH ROW.

● function_name
Specifies a user-defined function, which must be declared as taking no
parameters and returning data of trigger type. This function is executed when
a trigger fires.

● arguments
Specifies an optional comma-separated list of parameters to be provided for
the function when the trigger is executed.

● new_trigger_name
Specifies the new trigger name.

Examples
-- Create a source table and a target table.
openGauss=# CREATE TABLE test_trigger_src_tbl(id1 INT, id2 INT, id3 INT);
openGauss=# CREATE TABLE test_trigger_des_tbl(id1 INT, id2 INT, id3 INT);

-- Create a trigger function.
openGauss=# CREATE OR REPLACE FUNCTION tri_insert_func() RETURNS TRIGGER AS
 $$
 DECLARE
 BEGIN
 INSERT INTO test_trigger_des_tbl VALUES(NEW.id1, NEW.id2, NEW.id3);
 RETURN NEW;
 END
 $$ LANGUAGE PLPGSQL;

openGauss=# CREATE OR REPLACE FUNCTION tri_update_func() RETURNS TRIGGER AS
 $$
 DECLARE
 BEGIN
 UPDATE test_trigger_des_tbl SET id3 = NEW.id3 WHERE id1=OLD.id1;
 RETURN OLD;
 END

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 151

 $$ LANGUAGE PLPGSQL;

openGauss=# CREATE OR REPLACE FUNCTION TRI_DELETE_FUNC() RETURNS TRIGGER AS
 $$
 DECLARE
 BEGIN
 DELETE FROM test_trigger_des_tbl WHERE id1=OLD.id1;
 RETURN OLD;
 END
 $$ LANGUAGE PLPGSQL;

-- Create an INSERT trigger.
openGauss=# CREATE TRIGGER insert_trigger
 BEFORE INSERT ON test_trigger_src_tbl
 FOR EACH ROW
 EXECUTE PROCEDURE tri_insert_func();

-- Create an UPDATE trigger.
openGauss=# CREATE TRIGGER update_trigger
 AFTER UPDATE ON test_trigger_src_tbl
 FOR EACH ROW
 EXECUTE PROCEDURE tri_update_func();

-- Create a DELETE trigger.
openGauss=# CREATE TRIGGER delete_trigger
 BEFORE DELETE ON test_trigger_src_tbl
 FOR EACH ROW
 EXECUTE PROCEDURE tri_delete_func();

-- Execute the INSERT event and check the trigger results.
openGauss=# INSERT INTO test_trigger_src_tbl VALUES(100,200,300);
openGauss=# SELECT * FROM test_trigger_src_tbl;
openGauss=# SELECT * FROM test_trigger_des_tbl; // Check whether the trigger operation takes effect.

-- Execute the UPDATE event and check the trigger results.
openGauss=# UPDATE test_trigger_src_tbl SET id3=400 WHERE id1=100;
openGauss=# SELECT * FROM test_trigger_src_tbl;
openGauss=# SELECT * FROM test_trigger_des_tbl; // Check whether the trigger operation takes effect.

-- Execute the DELETE event and check the trigger results.
openGauss=# DELETE FROM test_trigger_src_tbl WHERE id1=100;
openGauss=# SELECT * FROM test_trigger_src_tbl;
openGauss=# SELECT * FROM test_trigger_des_tbl; // Check whether the trigger operation takes effect.

-- Modify a trigger.
openGauss=# ALTER TRIGGER delete_trigger ON test_trigger_src_tbl RENAME TO delete_trigger_renamed;

-- Delete a trigger.
openGauss=# DROP TRIGGER insert_trigger ON test_trigger_src_tbl;
openGauss=# DROP TRIGGER update_trigger ON test_trigger_src_tbl;
openGauss=# DROP TRIGGER delete_trigger_renamed ON test_trigger_src_tbl;

7.18 Stored Procedures
A stored procedure is a set of SQL statements that can implement a specific
function. You can repeatedly call the stored procedure to reduce the number of
repeated SQL statements and improve work efficiency.

Syntax
● Create a stored procedure.

CREATE PROCEDURE procedure_name
 [({[argname] [argmode] argtype [= expression]}[,...])]

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 152

 { IS | AS }
 BRGIN
 procedure_body
 END
/

● Call a stored procedure.
CALL procedure_name (param_expr);

● Delete a stored procedure.
DROP PROCEDURE procedure_name ;

Parameter Description
● procedure_name

Specifies the name of the stored procedure to be created.

● argname

Specifies the parameter name.

● argmode

Specifies the mode of a parameter. Value range: IN, OUT, INOUT, and
VARIADIC. VARIADIC specifies parameters of array type. The default value is
IN.

– IN

Specifies an input parameter. The value of the parameter must be
specified when the stored procedure is called. If the value of the
parameter is changed in the stored procedure, the value cannot be
returned.

– OUT

Specifies an output parameter. The value can be changed in the stored
procedure and can be returned.

– INOUT

Specifies input and output parameters. The value can be specified when
the stored procedure is called and can be changed and returned.

● argtype

Specifies the data type of the parameter.

● expression

Sets the default value.

● IS, AS

Required for the syntax. One of them must be provided. They have the same
function.

● BRGIN, END

Required for the syntax.

● procedure_body

Specifies the stored procedure content.

● param_expr

Specifies the parameter list. Use commas (,) to separate parameters. Use := or
=> to separate parameter names and parameter values.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 153

Examples
-- Create a table
openGauss=# CREATE TABLE graderecord
(
 number INTEGER,
 name CHAR(20),
 class CHAR(20),
 grade INTEGER
);

-- Define a stored procedure.
openGauss=# CREATE PROCEDURE insert_data (param1 INT = 0, param2 CHAR(20),param3
CHAR(20),param4 INT = 0)
IS
 BEGIN
 INSERT INTO graderecord VALUES(param1,param2,param3,param4);
END;
/

-- Call the stored procedure.
openGauss=# CALL insert_data(param1:=210101,param2:='Alan',param3:='21.01',param4:=92);

-- Delete the stored procedure.
openGauss=# DROP PROCEDURE insert_data;

7.19 Materialized Views
A materialized view is relative to a common view. A common view is a virtual
table, and a materialized view stores the execution results of SQL statements. You
can directly use data without repeatedly executing query statements, improving
performance.

Materialized views are classified into the following types based on the refresh
mode:

● Full-refresh materialized view: Only created materialized views can be fully
refreshed. Incremental refresh is not supported. The syntax for creating a full-
refresh materialized view is similar to the CREATE TABLE AS syntax.

● Incremental-refresh materialized view: Materialized views can be
incrementally refreshed. You need to manually execute statements to
incrementally refresh materialized views in a period of time. The difference
between the incremental-refresh and the full-refresh materialized views is
that the incremental-refresh materialized view supports only a small number
of scenarios. Currently, only base table scanning statements or UNION ALL
can be used to create materialized views.

Syntax of a Full-Refresh Materialized View
● Create a full-refresh materialized view.

CREATE MATERIALIZED VIEW view_name AS query;

● Fully refresh a materialized view.
REFRESH MATERIALIZED VIEW [view_name];

● Delete a materialized view.
DROP MATERIALIZED VIEW [view_name];

● Query a materialized view.
SELECT * FROM [view_name];

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 154

Parameters for Creating a Full-Refresh Materialized View
● view_name

Specifies the name of the materialized view to be created.
● AS query

Specifies the SELECT, TABLE, or VALUES command.

Example of Creating a Full-Refresh Materialized View
-- Prepare data.
openGauss=# CREATE TABLE t1(c1 int, c2 int);
openGauss=# INSERT INTO t1 VALUES(1, 1);
openGauss=# INSERT INTO t1 VALUES(2, 2);

-- Create a full-refresh materialized view.
openGauss=# CREATE MATERIALIZED VIEW mv AS select count(*) from t1;
CREATE MATERIALIZED VIEW

-- Query the materialized view result.
openGauss=# SELECT * FROM mv;
 count

 2
(1 row)

-- Insert data into the base table of the materialized view.
openGauss=# INSERT INTO t1 VALUES(3, 3);
INSERT 0 1

-- Fully refresh the full-refresh materialized view.
openGauss=# REFRESH MATERIALIZED VIEW mv;
REFRESH MATERIALIZED VIEW

-- Query the materialized view result.
openGauss=# SELECT * FROM mv;
 count

 3
(1 row)

-- Delete the materialized view.
openGauss=# DROP MATERIALIZED VIEW mv;
DROP MATERIALIZED VIEW

Syntax of an Incremental-Refresh Materialized View
● Create an incremental-refresh materialized view.

CREATE INCREMENTAL MATERIALIZED VIEW view_name AS query ;

● Fully refresh a materialized view.
REFRESH MATERIALIZED VIEW [view_name];

● Incrementally refresh a materialized view.
REFRESH INCREMENTAL MATERIALIZED VIEW [view_name];

● Delete a materialized view.
DROP MATERIALIZED VIEW [view_name];

● Query a materialized view.
SELECT * FROM [view_name];

Parameters for Creating an Incremental-Refresh Materialized View
● view_name

Specifies the name of the materialized view to be created.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 155

● AS query
Specifies the SELECT, TABLE, or VALUES command.

Example of Creating an Incremental-Refresh Materialized View
-- Prepare data.
openGauss=# CREATE TABLE t1(c1 int, c2 int);
openGauss=# INSERT INTO t1 VALUES(1, 1);
openGauss=# INSERT INTO t1 VALUES(2, 2);

-- Create an incremental-refresh materialized view.
openGauss=# CREATE INCREMENTAL MATERIALIZED VIEW mv AS SELECT * FROM t1;
CREATE MATERIALIZED VIEW

-- Insert data.
openGauss=# INSERT INTO t1 VALUES(3, 3);
INSERT 0 1

-- Incrementally refresh the materialized view.
openGauss=# REFRESH INCREMENTAL MATERIALIZED VIEW mv;
REFRESH MATERIALIZED VIEW

-- Query the materialized view result.
openGauss=# SELECT * FROM mv;
 c1 | c2
----+----
 1 | 1
 2 | 2
 3 | 3
(3 rows)

-- Insert data.
openGauss=# INSERT INTO t1 VALUES(4, 4);
INSERT 0 1

-- Fully refresh the materialized view.
openGauss=# REFRESH MATERIALIZED VIEW mv;
REFRESH MATERIALIZED VIEW

-- Query the materialized view result.
openGauss=# select * from mv;
 c1 | c2
----+----
 1 | 1
 2 | 2
 3 | 3
 4 | 4
(4 rows)

-- Delete the materialized view.
openGauss=# DROP MATERIALIZED VIEW mv;
DROP MATERIALIZED VIEW

7.20 Subqueries
A subquery, also called an internal query, is a nested query. The subquery embeds
a query statement in the WHERE clause of a database query and it is equivalent
to a temporary table. The query result of a SELECT statement can be used as the
input value of another statement.

A subquery can be used with the SELECT, INSERT, UPDATE, and DELETE
statements.

The subquery must comply with the following rules:

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 156

● The subquery must be enclosed in parentheses.
● The subquery can have only one column in the SELECT clause, unless there

are multiple columns in the main query to compare with the columns selected
by the subquery.

● ORDER BY cannot be used in the subquery, although it can be used in the
main query. GROUP BY can be used in the subquery with the same function
as ORDER BY.

● The subquery returns more than one row. It can be used only with multi-value
operators, such as IN.

● The BETWEEN operator cannot be used with the subquery, but it can be used
inside the subquery.

Subquery in the SELECT Statement
The SELECT statement queries the data returned by the subquery. The basic syntax
is as follows:

SELECT column_name [, column_name]
FROM table1 [, table2]
WHERE column_name OPERATOR
 (SELECT column_name [, column_name]
 FROM table1 [, table2]
 [WHERE]);

Example:

Create the customer table. The data is as follows:

openGauss=# SELECT * FROM customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
 6985 | maps | Joes | | 2200
 9976 | world | James | | 5000
 4421 | Admin | Local | | 3000
(6 rows)

Run the following statement to use a subquery in the SELECT statement:

openGauss=# SELECT * FROM customer_t1 WHERE c_customer_sk IN (SELECT c_customer_sk FROM
customer_t1 WHERE amount > 2500) ;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 9976 | world | James | | 5000
 4421 | Admin | Local | | 3000
(2 rows)

Subquery in the INSERT Statement
Subqueries can also be used with the INSERT statement. The INSERT statement
inserts the data returned by the subquery into another table. The basic syntax is as
follows:

INSERT INTO table_name [(column1 [, column2])]
SELECT [*|column1 [, column2]]
FROM table1 [, table2]
[WHERE VALUE OPERATOR]

Example:

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 157

Create the customer_bak table whose structure is the same as that of the
customer_t1 table.

openGauss=# CREATE TABLE customer_bak
(
 c_customer_sk integer,
 c_customer_id char(5),
 c_first_name char(6),
 c_last_name char(8),
 Amount integer
);
CREATE TABLE

Insert data in the customer_t1 table into the customer_bak table.

openGauss=# INSERT INTO customer_bak SELECT * FROM customer_t1 WHERE c_customer_sk IN (SELECT
c_customer_sk FROM customer_t1) ;
INSERT 0 6

After the data is inserted, data in the customer_bak table is as follows:

openGauss=# SELECT * FROM customer_bak;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
 6985 | maps | Joes | | 2200
 9976 | world | James | | 5000
 4421 | Admin | Local | | 3000
(6 rows)

Subquery in the UPDATE Statement
When a subquery is run by executing the UPDATE statement, multiple columns in
the table are updated. The basic syntax is as follows:

UPDATE table
SET column_name = new_value
[WHERE OPERATOR [VALUE]
 (SELECT COLUMN_NAME
 FROM TABLE_NAME
 [WHERE])

Example:

Change the value of amount of all customers whose c_customer_sk is set to a
value greater than 4000 in the customer_t1 table to 0.50 times of the original
value.

openGauss=# UPDATE customer_t1 SET amount = amount * 0.50 WHERE c_customer_sk IN (SELECT
c_customer_sk FROM customer_bak WHERE c_customer_sk > 5000);
UPDATE 2

The update operation affects two rows. After the update, the data in the
customer_t1 table is as follows:

openGauss=# SELECT * FROM customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
 4421 | Admin | Local | | 3000
 6985 | maps | Joes | | 1100
 9976 | world | James | | 2500
(6 rows)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 158

Subquery in the DELETE Statement
The basic syntax is as follows:

DELETE FROM TABLE_NAME
[WHERE OPERATOR [VALUE]
 (SELECT COLUMN_NAME
 FROM TABLE_NAME
 [WHERE])

Example:

Delete all customers whose c_customer_sk is set to a value greater than 4000
from the customer_t1 table.

openGauss=# DELETE FROM customer_t1 WHERE c_customer_sk IN (SELECT c_customer_sk FROM
customer_bak WHERE c_customer_sk > 5000);
DELETE 2

The deletion operation affects two rows. After deletion, the data in the
customer_t1 table is as follows:

openGauss=# SELECT * FROM customer_t1;
 c_customer_sk | c_customer_id | c_first_name | c_last_name | amount
---------------+---------------+--------------+-------------+--------
 3869 | hello | Grace | | 1000
 3869 | | Grace | |
 3869 | hello | | |
 4421 | Admin | Local | | 3000
(4 rows)

7.21 Permissions
A user who creates an object is the owner of this object. By default, Separation of
Duties is disabled after database installation. A database system administrator has
the same permissions as object owners. After an object is created, only the object
owner or system administrator can query, modify, and delete the object, and grant
permissions on the object to other users through GRANT by default.

To enable another user to use the object, grant required permissions to the user or
the role that contains the user.

To remove permissions, use REVOKE. Object owners have implicit permissions
(such as ALTER, DROP, COMMENT, INDEX, VACUUM, GRANT, and REVOKE) on
objects. That is, once becoming the owner of an object, the owner is immediately
granted the implicit permissions on the object. Object owners can remove their
own common permissions, for example, making tables read-only to themselves or
others, except the system administrator.

openGauss supports the following permissions, which are associated with different
object types:

● SELECT: allows SELECT on a specified table, view, or sequence. The SELECT
permission on the corresponding column is also required for UPDATE or
DELETE.

● INSERT: allows INSERT on a specified table.
● UPDATE: allows UPDATE on any column of a specified table. Generally,

UPDATE also requires the SELECT permission to query which rows need to be
updated. SELECT ... FOR UPDATE and SELECT ... FOR SHARE also require this
permission on at least one column, in addition to the SELECT permission.

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 159

● DELETE: allows DELETE on a row of a specified table. Generally, DELETE also
requires the SELECT permission to query which rows need to be deleted.

● TRUNCATE: allows TRUNCATE on a specified table.
● REFERENCES: allows creation of a foreign key constraint. This permission is

required on both referencing and referenced tables.
● CREATE:

– For databases, allows new schemas to be created within the database.
– For schemas, allows new objects to be created within the schema. To

rename an existing object, you must own the object and have the
CREATE permission on the schema of the object.

– For tablespaces, allows tables to be created within the tablespace, and
allows databases and schemas to be created that have the tablespace as
their default tablespace.

● CONNECT: allows you to access specified databases.
● EXECUTE: allows you to use specified functions and the operators that are

realized by the functions.
● USAGE:

– For procedural languages, allows use of the language for the creation of
functions in that language.

– For schemas, allows access to objects contained in the schema. Without
this permission, it is still possible to see the object names.

– For sequences, allows use of the nextval function.
– For data sources, specifies access permissions or is used as ALL

PRIVILEGES.
● ALTER: allows users to modify the attributes of a specified object, excluding

the owner and schema of the object.
● DROP: allows users to delete a specified object.
● COMMENT: allows users to define or modify comments of a specified object.
● INDEX: allows users to create indexes on specified tables, manage indexes on

the tables, and perform REINDEX and CLUSTER operations on the tables.
● VACUUM: allows users to perform ANALYZE and VACUUM operations on

specified tables.
● ALL PRIVILEGES: grants all available permissions to specified users or roles at

a time. Only a system administrator has the GRANT ALL PRIVILEGES
permission.

Syntax
● GRANT

GRANT grants permissions to roles and users. GRANT is used in the following
scenarios:
– Granting system permissions (such as sysadmin, CREATEDB, and

CREATEROLE) to a role or user
The syntax for granting sysadmin permissions to a specified role is as
follows:
GRANT ALL { PRIVILEGES | PRIVILEGE }
 TO role_name;

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 160

– Granting the permissions of a role or user to others
The syntax for granting the permissions of a role to other others is as
follows:
GRANT role_name [, ...]
 TO role_name [, ...]
 [WITH ADMIN OPTION];

– Granting database object permissions to a role or user

▪ Grant the table or view access permission to a user or role.
GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | ALTER | DROP
| COMMENT | INDEX | VACUUM } [, ...]
 | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];

▪ Grant the column access permission to a user or role.
GRANT { {{ SELECT | INSERT | UPDATE | REFERENCES | COMMENT } (column_name
[, ...])} [, ...]
 | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];

▪ Grant the database access permission to a user or role.
GRANT { { CREATE | CONNECT | TEMPORARY | TEMP | ALTER | DROP | COMMENT } [, ...]
 | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];

▪ Grant the schema access permission to a user or role.
GRANT { { CREATE | USAGE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];

NO TE

When you grant table or view permissions to other users, you also need to
grant the USAGE permission on the schema that the tables and views
belong to. Without the USAGE permission, the users with table or view
permissions can only see the object names, but cannot access them. This
syntax cannot be used to grant the permission to create tables in schemas
with the same name, but you can use the syntax for granting permission of
a role to others to achieve the same effect.

▪ Grant the tablespace access permission to a user or role.
GRANT { { CREATE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];

● REVOKE
– Revoking system permissions (such as sysadmin, CREATEDB, and

CREATEROLE) from a role or user
Revoke the sysadmin permission from a role.
REVOKE ALL { PRIVILEGES | PRIVILEGE } FROM role_name;

– Revoking permissions from a role
REVOKE [ADMIN OPTION FOR]
 role_name [, ...] FROM role_name [, ...]
 [CASCADE | RESTRICT];

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 161

– Revoking permissions on database objects

▪ Revoke the permission on a specified table or view.
REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | ALTER | DROP |
COMMENT | INDEX | VACUUM }[, ...]
 | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];

▪ Revoke the permission on a specified column in a table.
REVOKE [GRANT OPTION FOR]
 { {{ SELECT | INSERT | UPDATE | REFERENCES | COMMENT } (column_name [, ...])}
[, ...]
 | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];

▪ Revoke the permission on a specified database.
REVOKE [GRANT OPTION FOR]
 { { CREATE | CONNECT | TEMPORARY | TEMP | ALTER | DROP | COMMENT } [, ...]
 | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];

▪ Revoke the permission on a specified schema.
REVOKE [GRANT OPTION FOR]
 { { CREATE | USAGE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];

▪ Revoke the permission on a specified tablespace.
REVOKE [GRANT OPTION FOR]
 { { CREATE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];

Parameter Description
● role_name

Specifies the username.
● table_name

Specifies the table name.
● column_name

Specifies the column name.
● schema_name

Specifies the schema name.
● database_name

Specifies the database name.
● tablespace_name

Specifies the tablespace name.
● WITH GRANT OPTION

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 162

If WITH GRANT OPTION is specified, the recipient of the permission can in
turn grant it to others. Without a grant option, the recipient cannot do that.
This option cannot be granted to PUBLIC.

Examples
● Grant system permissions to a user or role.

Create the joe user and grant the sysadmin permission to it.
openGauss=# CREATE USER joe PASSWORD 'xxxxxxxx';
CREATE ROLE
openGauss=# GRANT ALL PRIVILEGES TO joe;
ALTER ROLE

Then the joe user has the sysadmin permission.
● Grant object permissions to a user or role.

a. Create the test schema and the customer table.
openGauss=# CREATE SCHEMA test;
CREATE SCHEMA

openGauss=# CREATE TABLE customer
(
 c_customer_sk integer,
 c_customer_id char(5),
 c_first_name char(6),
 c_last_name char(8),
 Amount integer
);
CREATE TABLE

b. Revoke user joe's sysadmin permission, and grant it with the usage
permission on the test schema and all the permissions on the customer
table.
openGauss=# REVOKE ALL PRIVILEGES FROM joe;
ALTER ROLE
openGauss=# GRANT USAGE ON SCHEMA test TO joe;
GRANT
openGauss=# GRANT ALL PRIVILEGES ON customer TO joe;
GRANT

After the permissions are successfully granted, user joe has all the
permissions on the customer table, including addition, deletion,
modification, and query permissions.

c. Grant the query permission on the c_customer_sk, c_customer_id, and
c_first_name columns and the update permission on the c_last_name
column in the customer table to user joe.
openGauss=# GRANT select (c_customer_sk,c_customer_id,c_first_name),update (c_last_name)
ON customer TO joe;
GRANT

After the permissions are successfully granted, user joe immediately has
the query permission on the c_customer_sk, c_customer_id,
c_first_name columns in the customer table. To enable user joe to grant
these permissions to other users, execute the following statement:
openGauss=# GRANT select (c_customer_sk,c_customer_id,c_first_name) ON customer TO joe
WITH GRANT OPTION;
GRANT

Grant the postgres database connection permission and schema creation
permission to user joe and enable this user to grant these permissions to
other users.
openGauss=# GRANT create,connect on database postgres TO joe WITH GRANT OPTION;
GRANT

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 163

Create the test_manager role, grant the access and object creation
permissions on the test schema to the test_manager role, but do not
allow this role to grant these permissions to others.
openGauss=# CREATE ROLE test_manager PASSWORD 'xxxxxxxx';
CREATE ROLE
openGauss=# GRANT USAGE,CREATE ON SCHEMA test TO test_manager;
GRANT

Create the tpcds_tbspc tablespace and grant all permissions on the
tablespace to user joe. However, user joe cannot grant these permissions
to other users.
openGauss=# CREATE TABLESPACE tpcds_tbspc RELATIVE LOCATION 'tablespace/tablespace_1';
CREATE TABLESPACE
openGauss=# GRANT ALL ON TABLESPACE tpcds_tbspc TO joe;
GRANT

● Grant a user's or role's permissions to other users or roles

a. Create the manager role, grant joe's permissions to the manager role,
and allow the manager role to grant these permissions to others.
openGauss=# CREATE ROLE manager PASSWORD 'xxxxxxxx';
CREATE ROLE
openGauss=# GRANT joe TO manager WITH ADMIN OPTION;
GRANT ROLE

b. Create the senior_manager user and grant manager's permissions to it.
openGauss=# CREATE ROLE senior_manager PASSWORD 'xxxxxxxx';
CREATE ROLE
openGauss=# GRANT manager TO senior_manager;
GRANT ROLE

7.22 Functions
The common functions of openGauss are as follows:

Mathematical Functions
● abs(x)

Description: Absolute value
Return type: same as the input
Example:
openGauss=# SELECT abs(-17.4);
 abs

 17.4
(1 row)

● cbrt(dp)
Description: Cubic root
Return type: double precision
Example:
openGauss=# SELECT cbrt(27.0);
 cbrt

 3
(1 row)

● ceil(x)
Description: Minimum integer greater than or equal to the parameter

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 164

Return type: integer
Example:
openGauss=# SELECT ceil(-42.8);
 ceil

 -42
(1 row)

● degrees(dp)
Description: Converts radians to angles.
Return type: double precision
Example:
openGauss=# SELECT degrees(0.5);
 degrees

 28.6478897565412
(1 row)

● exp(x)
Description: Natural exponent
Return type: dp or numeric. If implicit type conversion is not considered, the
return type is the same as the input type.
Example:
openGauss=# SELECT exp(1.0);
 exp

 2.7182818284590452
(1 row)

● floor(x)
Description: Maximum integer not larger than the parameter
Return type: same as the input
Example:
openGauss=# SELECT floor(-42.8);
 floor

 -43
(1 row)

● ln(x)
Description: Natural logarithm
Return type: dp or numeric. If implicit type conversion is not considered, the
return type is the same as the input type.
Example:
openGauss=# SELECT ln(2.0);
 ln

 .6931471805599453
(1 row)

● log(x)
Description: Logarithm with 10 as the base
Return type: same as the input
Example:
openGauss=# SELECT log(100.0);
 log

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 165

 2.0000000000000000
(1 row)

● log(b numeric, x numeric)
Description: Logarithm with b as the base
Return type: numeric
Example:
openGauss=# SELECT log(2.0, 64.0);
 log

 6.0000000000000000
(1 row)

● mod(x,y)
Description: Remainder of x/y (model) If x equals to 0, 0 is returned.
Return type: same as the parameter type
Example:
openGauss=# SELECT mod(9,4);
 mod

 1
(1 row)
openGauss=# SELECT mod(9,0);
 mod

 9
(1 row)

● pi()
Description: π constant value
Return type: double precision
Example:
openGauss=# SELECT pi();
 pi

 3.14159265358979
(1 row)

● power(a double precision, b double precision)
Description: b power of a
Return type: double precision
Example:
openGauss=# SELECT power(9.0, 3.0);
 power

 729.0000000000000000
(1 row)

● radians(dp)
Description: Converts angles to radians.
Return type: double precision
Example:
openGauss=# SELECT radians(45.0);
 radians

 .785398163397448
(1 row)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 166

● random()
Description: Random number between 0.0 and 1.0
Return type: double precision
Example:
openGauss=# SELECT random();
 random

 .824823560658842
(1 row)

● round(x)
Description: Integer closest to the input parameter
Return type: same as the input
Example:
openGauss=# SELECT round(42.4);
 round

 42
(1 row)

openGauss=# SELECT round(42.6);
 round

 43
(1 row)

● round(v numeric, s int)
Description: s digits are kept after the decimal point.
Return type: numeric
Example:
openGauss=# SELECT round(42.4382, 2);
 round

 42.44
(1 row)

● sign(x)
Description: Returns symbols of this parameter.
Return type: –1 indicates minus. 0 indicates 0, and 1 indicates positive
numbers.
Example:
openGauss=# SELECT sign(-8.4);
 sign

 -1
(1 row)

● sqrt(x)
Description: Square root
Return type: dp or numeric. If implicit type conversion is not considered, the
return type is the same as the input type.
Example:
openGauss=# SELECT sqrt(2.0);
 sqrt

 1.414213562373095
(1 row)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 167

● trunc(x)
Description: Truncates (the integral part).
Return type: same as the input
Example:
openGauss=# SELECT trunc(42.8);
 trunc

 42
(1 row)

● trunc(v numeric, s int)
Description: Truncates a number with s digits after the decimal point.
Return type: numeric
Example:
openGauss=# SELECT trunc(42.4382, 2);
 trunc

 42.43
(1 row)

Trigonometric Functions
● acos(x)

Description: Arc cosine
Return type: double precision
Example:
openGauss=# SELECT acos(-1);
 acos

 3.14159265358979
(1 row)

● asin(x)
Description: Arc sine
Return type: double precision
Example:
openGauss=# SELECT asin(0.5);
 asin

 .523598775598299
(1 row)

● atan(x)
Description: Arc tangent
Return type: double precision
Example:
openGauss=# SELECT atan(1);
 atan

 .785398163397448
(1 row)

● atan2(y, x)
Description: Arc tangent of y/x
Return type: double precision

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 168

Example:
openGauss=# SELECT atan2(2, 1);
 atan2

 1.10714871779409
(1 row)

● cos(x)
Description: Cosine
Return type: double precision
Example:
openGauss=# SELECT cos(-3.1415927);
 cos

 -.999999999999999
(1 row)

● cot(x)
Description: Cotangent
Return type: double precision
Example:
openGauss=# SELECT cot(1);
 cot

 .642092615934331
(1 row)

● sin(x)
Description: Sine
Return type: double precision
Example:
openGauss=# SELECT sin(1.57079);
 sin

 .999999999979986
(1 row)

● tan(x)
Description: Tangent
Return type: double precision
Example:
openGauss=# SELECT tan(20);
 tan

 2.23716094422474
(1 row)

String Functions and Operators
● string || string

Description: Concatenates strings.
Return type: text
Example:
openGauss=# SELECT 'MPP'||'DB' AS RESULT;
 result

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 169

 MPPDB
(1 row)

● bit_length(string)
Description: Specifies the number of bits occupied by a string.
Return type: int
Example:
openGauss=# SELECT bit_length('world');
 bit_length

 40
(1 row)

● convert(string bytea, src_encoding name, dest_encoding name)
Description: Converts the bytea string to dest_encoding. src_encoding
specifies the source code encoding. The string must be valid in this encoding.
Return type: bytea
Example:
openGauss=# SELECT convert('text_in_utf8', 'UTF8', 'GBK');
 convert

 \x746578745f696e5f75746638
(1 row)

● lower(string)
Description: Converts the string into the lowercase.
Return type: varchar
Example:
openGauss=# SELECT lower('TOM');
 lower

 tom
(1 row)

● octet_length(string)
Description: Specifies the number of bytes in a string.
Return type: int
Example:
openGauss=# SELECT octet_length('jose');
 octet_length

 4
(1 row)

● overlay(string placing string FROM int [for int])
Description: Replaces substrings. FROM int indicates the start position of the
replacement in the first string. for int indicates the number of characters
replaced in the first string.
Return type: text
Example:
openGauss=# SELECT overlay('hello' placing 'world' from 2 for 3);
 overlay

 hworldo
(1 row)

● position(substring in string)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 170

Description: Specifies the position of a substring. Parameters are case-
sensitive.
Return type: int. If the character string does not exist, 0 is returned.
Example:
openGauss=# SELECT position('ing' in 'string');
 position

 4
(1 row)

● substring(string [from int] [for int])
Description: Extracts a substring. from int indicates the start position of the
truncation. for int indicates the number of characters truncated.
Return type: text
Example:
openGauss=# SELECT substring('Thomas' from 2 for 3);
 substring

 hom
(1 row)

● substring(string from pattern)
Description: Extracts substrings matching the POSIX regular expression. It
returns the text that matches the pattern. If no match record is found, a null
value is returned.
Return type: text
Example:
openGauss=# SELECT substring('Thomas' from '...$');
 substring

 mas
(1 row)
openGauss=# SELECT substring('foobar' from 'o(.)b');
 result

 o
(1 row)
openGauss=# SELECT substring('foobar' from '(o(.)b)');
 result

 oob
(1 row)

● trim([leading |trailing |both] [characters] from string)
Description: Removes the longest string containing only the characters (a
space by default) from the start/end/both ends of the string.
Return type: varchar
Example:
openGauss=# SELECT trim(BOTH 'x' FROM 'xTomxx');
 btrim

 Tom
(1 row)
openGauss=# SELECT trim(LEADING 'x' FROM 'xTomxx');
 ltrim

 Tomxx
(1 row)
openGauss=# SELECT trim(TRAILING 'x' FROM 'xTomxx');
 rtrim

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 171

 xTom
(1 row)

● upper(string)
Description: Converts the string into the uppercase.
Return type: varchar
Example:
openGauss=# SELECT upper('tom');
 upper

 TOM
(1 row)

● ascii(string)
Description: Indicates the ASCII code of the first character in the string.
Return type: integer
Example:
openGauss=# SELECT ascii('xyz');
 ascii

 120
(1 row)

● btrim(string text [, characters text])
Description: Removes the longest string consisting only of characters in
characters (a space by default) from the start and end of string.
Return type: text
Example:
openGauss=# SELECT btrim('sring' , 'ing');
 btrim

 sr
(1 row)

● chr(integer)
Description: Specifies the character of the ASCII code.
Return type: varchar
Example:
openGauss=# SELECT chr(65);
 chr

 A
(1 row)

● convert(string bytea, src_encoding name, dest_encoding name)
Description: Converts the bytea string to dest_encoding. src_encoding
specifies the source code encoding. The string must be valid in this encoding.
Return type: bytea
Example:
openGauss=# SELECT convert('text_in_utf8', 'UTF8', 'GBK');
 convert

 \x746578745f696e5f75746638
(1 row)

● initcap(string)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 172

Description: Converts the first letter of each word in the string into the
uppercase and the other letters into the lowercase.
Return type: text
Example:
openGauss=# SELECT initcap('hi THOMAS');
 initcap

 Hi Thomas
(1 row)

● length(string)
Description: Obtains the number of characters in a string.
Return type: integer
Example:
openGauss=# SELECT length('abcd');
 length

 4
(1 row)

● lpad(string text, length int [, fill text])
Description: Fills up string to length by appending the characters fill (a space
by default). If string is already longer than length, then it is truncated.
Return type: text
Example:
openGauss=# SELECT lpad('hi', 5, 'xyza');
 lpad

 xyzhi
(1 row)

● ltrim(string [, characters])
Description: Removes the longest string containing only characters from
characters (a space by default) from the start of string.
Return type: varchar
Example:
openGauss=# SELECT ltrim('xxxxTRIM','x');
 ltrim

 TRIM
(1 row)

● md5(string)
Description: Encrypts a string in MD5 mode and returns a value in
hexadecimal form.

NO TE

The MD5 encryption algorithm is not recommended because it has lower security and
poses security risks.

Return type: text
Example:
openGauss=# SELECT md5('ABC');
 md5

 902fbdd2b1df0c4f70b4a5d23525e932
(1 row)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 173

● repeat(string text, number int)
Description: Repeats string the specified number of times.
Return type: text
Example:
openGauss=# SELECT repeat('Pg', 4);
 repeat

 PgPgPgPg
(1 row)

● replace(string text, from text, to text)
Description: Replaces all occurrences in string of substring from with
substring to.
Return type: text
Example:
openGauss=# SELECT replace('abcdefabcdef', 'cd', 'XXX');
 replace

 abXXXefabXXXef
(1 row)

● rpad(string text, length int [, fill text])
Description: Fills up string to length by appending the characters fill (a space
by default). If string is already longer than length, then it is truncated.
Return type: text
Example:
openGauss=# SELECT rpad('hi', 5, 'xy');
 rpad

 hixyx
(1 row)

● rtrim(string text [, characters text])
Description: Removes the longest string containing only characters from
characters (a space by default) from the end of string.
Return type: text
Example:
openGauss=# SELECT rtrim('trimxxxx', 'x');
 rtrim

 trim
(1 row)

● split_part(string text, delimiter text, field int)
Description: Splits string on delimiter and returns the fieldth column
(counting from text of the first appeared delimiter).
Return type: text
Example:
openGauss=# SELECT split_part('abc~@~def~@~ghi', '~@~', 2);
 split_part

 def
(1 row)

● strpos(string, substring)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 174

Description: Specifies the position of a substring. It is the same as
position(substring in string). However, the parameter sequences of them are
reversed.
Return type: int
Example:
openGauss=# SELECT strpos('source', 'rc');
 strpos

 4
(1 row)

● to_hex(number int or bigint)
Description: Converts a number to a hexadecimal expression.
Return type: text
Example:
openGauss=# SELECT to_hex(2147483647);
 to_hex

 7fffffff
(1 row)

● translate(string text, from text, to text)
Description: Any character in string that matches a character in the from set
is replaced by the corresponding character in the to set. If from is longer than
to, extra characters occurred in from are removed.
Return type: text
Example:
openGauss=# SELECT translate('12345', '143', 'ax');
 translate

 a2x5
(1 row)

Functions Related to Type Conversion
● to_char(timestamp, text)

Description: Converts the values of the timestamp type into the strings in the
specified format.
Return type: text
Example:
openGauss=# SELECT to_char(current_timestamp, 'HH12:MI:SS');
 to_char

 10:55:59
(1 row)

● to_char(interval, text)
Description: Converts the values of the time interval type into the strings in
the specified format.
Return type: text
Example:
openGauss=# SELECT to_char(interval '15h 2m 12s', 'HH24:MI:SS');
 to_char

 15:02:12
(1 row)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 175

● to_char(int, text)
Description: Converts the values of the integer type into the strings in the
specified format.
Return type: text
Example:
openGauss=# SELECT to_char(125, '999');
 to_char

 125
(1 row)

● to_char(double precision/real, text)
Description: Converts the values of the floating point type into the strings in
the specified format.
Return type: text
Example:
openGauss=# SELECT to_char(125.8::real, '999D99');
 to_char

 125.80
(1 row)

● to_char(numeric, text)
Description: Converts the values of the numeric type into the strings in the
specified format.
Return type: text
Example:
openGauss=# SELECT to_char(-125.8, '999D99S');
 to_char

 125.80-
(1 row)

● to_date(text, text)
Description: Converts the values of the string type into the dates in the
specified format.
Return type: timestamp without time zone
Example:
openGauss=# SELECT to_date('05 Dec 2000', 'DD Mon YYYY');
 to_date

 2000-12-05 00:00:00
(1 row)

● to_number(text, text)
Description: Converts the values of the string type into the numbers in the
specified format.
Return type: numeric
Example:
openGauss=# SELECT to_number('12,454.8-', '99G999D9S');
 to_number

 -12454.8
(1 row)

● to_timestamp(text, text)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 176

Description: Converts values of the string type into the timestamp of the
specified type.
Return type: timestamp
Example:
openGauss=# SELECT to_timestamp('05 Dec 2000', 'DD Mon YYYY');
 to_timestamp

 2000-12-05 00:00:00
(1 row)

● to_timestamp(double precision)
Description: Converts a UNIX century into a timestamp.
Return type: timestamp with time zone
Example:
openGauss=# SELECT to_timestamp(1284352323);
 to_timestamp

 2010-09-13 12:32:03+08
(1 row)

openGauss
Tutoria 7 Advanced Data Management

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 177

8 Advanced Features

8.1 Index Recommendation

8.2 DB4AI

8.3 Column Store

8.4 LLVM

8.5 Ustore

8.6 MOT

8.7 Fully-encrypted Database

8.8 DCF

8.9 SMP

8.1 Index Recommendation
openGauss index recommendation has three functions, including single-query
index recommendation, virtual index recommendation, and workload-level index
recommendation.

Single-query Index Recommendation
The single-query index recommendation function supports direct operations in the
database and generates recommended indexes for a single query statement
entered by users based on the semantic information of the query statement and
the statistics data of the database. This function supports only a single SELECT
statement and does not support other types of SQL statements. This function
depends on the gs_index_advise function.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 178

Table 8-1 Single-query index recommendation APIs

Function Parameter Description

gs_index_advise SQL statement string Generates a
recommendation index
for a single query
statement.

Use the preceding function to obtain the recommendation index generated for the
query. The recommendation result consists of the table name and column name of
the index. To use the tool, do as follows:

openGauss=# select "table", "column" from gs_index_advise('SELECT c_discount from bmsql_customer
where c_w_id = 10');
 table | column
----------------+----------
 bmsql_customer | (c_w_id)
(1 row)

The preceding statement indicates that an index should be created on the c_w_id
column of the bmsql_customer table. To create the index, run the following
command:

CREATE INDEX idx on bmsql_customer(c_w_id);

A composite index may be recommended for some SQL statements, for example:

openGauss=# select "table", "column" from gs_index_advise('select name, age, sex from t1 where age >=
18 and age < 35 and sex = ''f'';');
 table | column
-------+------------
 t1 | (age, sex)
(1 row)

The preceding statement indicates that a composite index (age, sex) should be
created on table t1. To create the index, run the following command:

CREATE INDEX idx1 on t1(age, sex);

Virtual Index Recommendation

The virtual index recommendation function supports direct operations in the
database and simulates the creation of a real index to avoid the time and space
overhead required for creating a real index. Based on the virtual index, users can
estimate cost of the index on the specified query statement by using the optimizer.
For details about the functions and GUC parameters related to virtual indexes, see
Table 8-2 and Table 8-3.

Table 8-2 Virtual index functions

Function Parameter Description

hypopg_create_index Character string of the
statement for creating
an index

Creates a virtual index.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 179

Function Parameter Description

hypopg_display_index None Displays information
about all created virtual
indexes.

hypopg_drop_index OID of the index Deletes a specified
virtual index.

hypopg_reset_index None Clears all virtual indexes.

hypopg_estimate_size OID of the index Estimates the space
required for creating a
specified index.

Table 8-3 GUC parameters related to virtual indexes

Parameter Description Default Value

enable_hypo_index Whether to enable the
virtual index function.

off

To use the tool, do as follows:

Step 1 Use the hypopg_create_index function to create a virtual index.
openGauss=> select * from hypopg_create_index('create index on bmsql_customer(c_w_id)');
 indexrelid | indexname
------------+-------------------------------------
 329726 | <329726>btree_bmsql_customer_c_w_id
(1 row)

Step 2 Enable the GUC parameter enable_hypo_index. This parameter determines
whether the database optimizer considers the created virtual index when
executing the EXPLAIN statement. By executing EXPLAIN on a specific query
statement, you can evaluate whether the index can improve the execution
efficiency of the query statement based on the execution plan provided by the
optimizer. For example:

Before enabling the GUC parameter, run the combined statement of keyword
EXPLAIN and the query statement.

openGauss=> explain SELECT c_discount from bmsql_customer where c_w_id = 10;
 QUERY PLAN
--
 Seq Scan on bmsql_customer (cost=0.00..52963.06 rows=31224 width=4)
 Filter: (c_w_id = 10)
(2 rows)

To enable the GUC parameters, run the following command:

openGauss=> set enable_hypo_index = on;
SET

After enabling the GUC parameter, run the combined statement of keyword
EXPLAIN and the query statement.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 180

openGauss=> explain SELECT c_discount from bmsql_customer where c_w_id = 10;
 QUERY PLAN
--
 [Bypass]
 Index Scan using <329726>btree_bmsql_customer_c_w_id on bmsql_customer (cost=0.00..39678.69
rows=31224 width=4)
 Index Cond: (c_w_id = 10)
(3 rows)

By comparing the two execution plans, you can find that the index may reduce the
execution cost of the specified query statement. Then, you can consider creating a
real index.

Step 3 (Optional) Use the hypopg_display_index function to display all created virtual
indexes. For example:
openGauss=> select * from hypopg_display_index();
 indexname | indexrelid | table | column
--+------------+----------------+------------------
 <329726>btree_bmsql_customer_c_w_id | 329726 | bmsql_customer | (c_w_id)
 <329729>btree_bmsql_customer_c_d_id_c_w_id | 329729 | bmsql_customer | (c_d_id, c_w_id)
(2 rows)

Step 4 (Optional) Use the hypopg_estimate_size function to estimate the space (in
bytes) required for creating a virtual index. For example:
openGauss=> select * from hypopg_estimate_size(329730);
 hypopg_estimate_size

 15687680
(1 row)

Step 5 Delete the virtual index.

Use the hypopg_drop_index function to delete the virtual index of a specified
OID. For example:

openGauss=> select * from hypopg_drop_index(329726);
 hypopg_drop_index

 t
(1 row)

Use the hypopg_reset_index function to clear all created virtual indexes at a time.
For example:
openGauss=> select * from hypopg_reset_index();
 hypopg_reset_index

(1 row)

----End

Workload-level Index Recommendation
For workload-level indexes, you can run scripts outside the database to use this
function. This function uses the workload of multiple DML statements as the input
to generate a batch of indexes that can optimize the overall workload execution
performance.

Step 1 Prepare a file that contains multiple DML statements as the input workload. Each
statement in the file occupies a line. You can obtain historical service statements
from the offline logs of the database.

Step 2 Run the Python script index_advisor_workload.py:

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 181

python index_advisor_workload.py [p PORT] [d DATABASE] [f FILE] [--h HOST] [-U USERNAME] [-W
PASSWORD][--schema SCHEMA]
[--max_index_num MAX_INDEX_NUM][--max_index_storage MAX_INDEX_STORAGE] [--multi_iter_mode] [--
multi_node] [--json] [--driver] [--show_detail]

The input parameters are as follows:

● PORT: port of the connected database.
● DATABASE: name of the connected database.
● FILE: file path that contains the workload statement.
● HOST (optional): ID of the host that connects to the database.
● USERNAME (optional): username for connecting to the database.
● PASSWORD (optional): password for connecting to the database.
● SCHEMA: schema name.
● MAX_INDEX_NUM (optional): maximum number of recommended indexes.
● MAX_INDEX_STORAGE (optional): maximum size of the index set space.
● multi_node (optional): specifies whether the current instance is a distributed

database instance.
● multi_iter_mode (optional): algorithm mode. You can switch the algorithm

mode by setting this parameter.
● json (optional): specifies the file path format of the workload statement as

JSON after SQL normalization. By default, each SQL statement occupies one
line.

● driver (optional): specifies whether to use the Python driver to connect to the
database. By default, gsql is used for the connection.

● show_detail (optional): specifies whether to display the detailed optimization
information about the current recommended index set.

For example:
python index_advisor_workload.py 6001 postgres tpcc_log.txt --schema public --max_index_num 10 --
multi_iter_mode

The recommendation result is a batch of indexes, which are displayed on the
screen in the format of multiple create index statements. The following is an
example of the result.

create index ind0 on public.bmsql_stock(s_i_id,s_w_id);
create index ind1 on public.bmsql_customer(c_w_id,c_id,c_d_id);
create index ind2 on public.bmsql_order_line(ol_w_id,ol_o_id,ol_d_id);
create index ind3 on public.bmsql_item(i_id);
create index ind4 on public.bmsql_oorder(o_w_id,o_id,o_d_id);
create index ind5 on public.bmsql_new_order(no_w_id,no_d_id,no_o_id);
create index ind6 on public.bmsql_customer(c_w_id,c_d_id,c_last,c_first);
create index ind7 on public.bmsql_new_order(no_w_id);
create index ind8 on public.bmsql_oorder(o_w_id,o_c_id,o_d_id);
create index ind9 on public.bmsql_district(d_w_id);

----End

8.2 DB4AI
The current version of openGauss supports the native DB4AI capability. By
introducing native AI operators, openGauss simplifies the operation process and
fully utilizes the optimization and execution capabilities of the database optimizer

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 182

and executor to obtain the high-performance model training capability in the
database. With a simpler model training and prediction process and higher
performance, developers can focus on model tuning and data analysis in a shorter
period of time, avoiding fragmented technology stacks and redundant code
implementation.

DB4AI of the current version supports logistic regression (binary classification
tasks), linear regression, and vector machine algorithms (classification tasks)
based on the SGD operator, as well as the K-Means clustering algorithm based on
the K-Means operator.

Keyword Parsing

Table 8-4 DB4AI syntax and keywords

Name Description

Statement CREATE MODEL Creates a model, trains it, and
saves the model.

PREDICT BY Uses an existing model for
prediction.

Keywords TARGET Target column name of a
training or prediction task.

FEATURES Data feature column name of a
training or prediction task.

MODEL Model name of a training task.

Usage Guide

Step 1 You can run the CREATE MODEL statement to create and train a model.

Taking dataset kmeans_2d as an example, the data content of the table is as
follows:

openGauss=# select * from kmeans_2d;
 id | position
----+-------------------------------------
 1 | {74.5268815685995,88.2141939294524}
 2 | {70.9565760521218,98.8114827475511}
 3 | {76.2756086327136,23.8387574302033}
 4 | {17.8495847294107,81.8449544720352}
 5 | {81.2175785354339,57.1677675866522}
 6 | {53.97752255667,49.3158342130482}
 7 | {93.2475341879763,86.934042100329}
 8 | {72.7659293473698,19.7020415100269}
 9 | {16.5800288529135,75.7475957670249}
 10 | {81.8520747194998,40.3476078575477}
 11 | {76.796671198681,86.3827232690528}
 12 | {59.9231450678781,90.9907738864422}
 13 | {70.161884885747,19.7427458665334}
 14 | {11.1269539105706,70.9988166182302}
 15 | {80.5005071521737,65.2822235273197}
 16 | {54.7030725912191,52.151339428965}
 17 | {103.059707058128,80.8419883321039}

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 183

 18 | {85.3574452036992,14.9910179991275}
 19 | {28.6501615960151,76.6922890325077}
 20 | {69.7285806713626,49.5416352967732}
(20 rows)

The data type of the position field in this table is double precision[].

Specify position as a feature column in the kmeans_2d training set, and use the
K-Means algorithm to create and save the point_kmeans model.
openGauss=# CREATE MODEL point_kmeans USING kmeans FEATURES position FROM kmeans_2d WITH
num_centroids=3;
NOTICE: Hyperparameter max_iterations takes value DEFAULT (10)
NOTICE: Hyperparameter num_centroids takes value 3
NOTICE: Hyperparameter tolerance takes value DEFAULT (0.000010)
NOTICE: Hyperparameter batch_size takes value DEFAULT (10)
NOTICE: Hyperparameter num_features takes value DEFAULT (2)
NOTICE: Hyperparameter distance_function takes value DEFAULT (L2_Squared)
NOTICE: Hyperparameter seeding_function takes value DEFAULT (Random++)
NOTICE: Hyperparameter verbose takes value DEFAULT (0)
NOTICE: Hyperparameter seed takes value DEFAULT (0)
MODEL CREATED. PROCESSED 1

In the preceding command:

● The CREATE MODEL statement is used to train and save a model.
● USING specifies the algorithm name.
● FEATURES specifies the features of the training model and needs to be added

based on the column name of the training data table.
● TARGET specifies the training target of the model. It can be the column name

of the data table required for training or an expression, for example, price >
10000.

● WITH specifies the hyperparameters used for model training. When the
hyperparameters are not set by the user, the framework uses the default
value.
The framework supports various hyperparameter combinations for different
operators. For details, see Table 8-5.

Table 8-5 Hyperparameters supported by operators

Operator Hyperparameter

GD
(logistic_regression,
linear_regression, and
svm_classification)

optimizer(char*); verbose(bool);
max_iterations(int); max_seconds(double);
batch_size(int); learning_rate(double);
decay(double); tolerance(double)
SVM limits the hyperparameter
lambda(double).

Kmeans max_iterations(int); num_centroids(int);
tolerance(double); batch_size(int);
num_features(int); distance_function(char*);
seeding_function(char*); verbose(int);seed(int)

Table 8-6 shows the default value and value range of each hyperparameter.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 184

Table 8-6 Default value and value range of each hyperparameter

Operator Default
Hyperparameter Value

Value Range Hyperparameter
Description

GD
(logistic_r
egression,
linear_reg
ression,
and
svm_classif
ication)

optimizer = gd (gradient
descent)

gd or ngd
(natural
gradient
descent)

Optimizer

verbose = false T/F Log display

max_iterations = 100 (0,
INT_MAX_VAL
UE]

Maximum
iterations

max_seconds = 0 (The
running duration is not
limited.)

[0,INT_MAX_V
ALUE]

Running duration

batch_size = 1000 (0,
MAX_MEMOR
Y_LIMIT]

Number of
samples per
training

learning_rate = 0.8 (0,
DOUBLE_MAX
_VALUE]

Learning rate

decay = 0.95 (0,
DOUBLE_MAX
_VALUE]

Weight decay rate

tolerance = 0.0005 (0,
DOUBLE_MAX
_VALUE]

Tolerance

seed = 0 (random value
of seed)

[0,
INT_MAX_VAL
UE]

Seed

just for SVM:lambda =
0.01

(0,
DOUBLE_MAX
_VALUE)

Regularization
parameter

Kmeans max_iterations = 10 [1,
INT_MAX_VAL
UE]

Maximum
iterations

num_centroids = 10 [1,
MAX_MEMOR
Y_LIMIT]

Number of
clusters

tolerance = 0.00001 (0,1) Central point error

batch_size = 10 [1,
MAX_MEMOR
Y_LIMIT]

Number of
samples per
training

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 185

Operator Default
Hyperparameter Value

Value Range Hyperparameter
Description

num_features = 2 [1,
GS_MAX_COLS
]

Number of
sample features

distance_function =
"L2_Squared"

L1\L2\L2_Squa
red\Linf

Regularization
method

seeding_function =
"Random++"

"Random+
+"\"KMeans||"

Method for
initializing seed
points

verbose = 0U { 0, 1, 2 } Verbose mode

seed = 0U [0,
INT_MAX_VAL
UE]

Seed

MAX_MEMORY_LIMIT = Maximum number of tuples loaded in memory

GS_MAX_COLS = Maximum number of attributes in a database table

If the model is saved successfully, the following information is returned:
MODEL CREATED. PROCESSED x

Step 2 View the model information.

After the training is complete, the model is stored in the gs_model_warehouse
system catalog. You can view information about the model and training process in
the gs_model_warehouse system catalog.

You can view a model by viewing the system catalog. For example, run the
following SQL statement to view the model named point_kmeans:

openGauss=# select * from gs_model_warehouse where modelname='point_kmeans';
-[RECORD 1]---------
+--
--
--
--
--
modelname | point_kmeans
modelowner | 10
createtime | 2021-04-30 17:30:39.59044
processedtuples | 20
discardedtuples | 0
pre_process_time | 6.2001e-05
exec_time | .000185272
iterations | 5
outputtype | 23
modeltype | kmeans
query | CREATE MODEL point_kmeans USING kmeans FEATURES position FROM kmeans_2d
WITH num_centroids=3;
modeldata |
weight |
hyperparametersnames |
{max_iterations,num_centroids,tolerance,batch_size,num_features,distance_function,seeding_function,verbose
,seed}
hyperparametersvalues | {10,3,1e-05,10,2,L2_Squared,Random++,0,0}
hyperparametersoids | {23,23,701,23,23,1043,1043,23,23}

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 186

coefnames |
{original_num_centroids,actual_num_centroids,dimension,distance_function_id,seed,coordinates}
coefvalues | {3,3,2,2,572368998,"(77.282589,23.724434)(74.421616,73.239455)
(18.551682,76.320914)"}
coefoids |
trainingscoresname |
trainingscoresvalue |
modeldescribe | {"id:1,objective_function:542.851169,avg_distance_to_centroid:
108.570234,min_distance_to_centroid:1.027078,max_distance_to_centroid:
297.210108,std_dev_distance_to_centroid:105.053257,cluster_size:5","id:2,objective_function:
5825.982139,avg_distance_to_centroid:529.634740,min_distance_to_centroid:
100.270449,max_distance_to_centroid:990.300588,std_dev_distance_to_centroid:285.915094,cluster_size:
11","id:3,objective_function:220.792591,avg_distance_to_centroid:55.198148,min_distance_to_centroid:
4.216111,max_distance_to_centroid:102.117204,std_dev_distance_to_centroid:39.319118,cluster_size:4"}

Step 3 Use an existing model to perform a prediction task.

Use the SELECT and PREDICT BY keywords to complete the prediction task based
on the existing model.

Query syntax: SELECT... PREDICT BY... (FEATURES...)... FROM...;

openGauss=# SELECT id, PREDICT BY point_kmeans (FEATURES position) as pos FROM (select * from
kmeans_2d limit 10);
 id | pos
----+-----
 1 | 2
 2 | 2
 3 | 1
 4 | 3
 5 | 2
 6 | 2
 7 | 2
 8 | 1
 9 | 3
 10 | 1
(10 rows)

For the same prediction task, the results of the same model are stable. In addition,
models trained based on the same hyperparameter and training set are stable. AI
model training is random (random gradient descent of data distribution each
batch). Therefore, the computing performance and results of different models can
vary slightly.

Step 4 View the execution plan.

You can use the EXPLAIN statement to analyze the execution plan in the model
training or prediction process of CREATE MODEL and PREDICT BY. The keyword
EXPLAIN can be followed by a CREATE MODEL or PREDICT BY statement/clause
or an optional parameter. Table 8-7 shows the supported parameters.

Table 8-7 Parameters supported by EXPLAIN

Parameter Description

ANALYZE Boolean variable, which is used to add
description information such as the
running time and number of loop
times

VERBOSE Boolean variable, which determines
whether to output the training running
information to the client

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 187

Parameter Description

COSTS Boolean variable

CPU Boolean variable

DETAIL Boolean variable, which is unavailable

NODES Boolean variable, which is unavailable

NUM_NODES Boolean variable, which is unavailable.

BUFFERS Boolean variable

TIMING Boolean variable

PLAN Boolean variable

FORMAT Optional format type: TEXT, XML,
JSON, and YAML

Examples:

openGauss=# Explain CREATE MODEL patient_logisitic_regression USING logistic_regression FEATURES
second_attack, treatment TARGET trait_anxiety > 50 FROM patients WITH batch_size=10, learning_rate =
0.05;
NOTICE: Hyperparameter batch_size takes value 10
NOTICE: Hyperparameter decay takes value DEFAULT (0.950000)
NOTICE: Hyperparameter learning_rate takes value 0.050000
NOTICE: Hyperparameter max_iterations takes value DEFAULT (100)
NOTICE: Hyperparameter max_seconds takes value DEFAULT (0)
NOTICE: Hyperparameter optimizer takes value DEFAULT (gd)
NOTICE: Hyperparameter tolerance takes value DEFAULT (0.000500)
NOTICE: Hyperparameter seed takes value DEFAULT (0)
NOTICE: Hyperparameter verbose takes value DEFAULT (FALSE)
NOTICE: GD shuffle cache size 212369
 QUERY PLAN

 Gradient Descent (cost=0.00..0.00 rows=0 width=0)
 -> Seq Scan on patients (cost=0.00..32.20 rows=1776 width=12)
(2 rows)

Step 5 Perform troubleshooting in case of exceptions.
● Training phase

– Scenario 1: When the value of the hyperparameter exceeds the value
range, the model training fails and an error message is returned. For
example:
openGauss=# CREATE MODEL patient_linear_regression USING linear_regression FEATURES
second_attack,treatment TARGET trait_anxiety FROM patients WITH optimizer='aa';
NOTICE: Hyperparameter batch_size takes value DEFAULT (1000)
NOTICE: Hyperparameter decay takes value DEFAULT (0.950000)
NOTICE: Hyperparameter learning_rate takes value DEFAULT (0.800000)
NOTICE: Hyperparameter max_iterations takes value DEFAULT (100)
NOTICE: Hyperparameter max_seconds takes value DEFAULT (0)
NOTICE: Hyperparameter optimizer takes value aa
ERROR: Invalid hyperparameter value for optimizer. Valid values are: gd, ngd. (default is gd)

– Scenario 2: If the model name already exists, the model fails to be saved,
and an error message with the cause is displayed:
openGauss=# CREATE MODEL patient_linear_regression USING linear_regression FEATURES
second_attack,treatment TARGET trait_anxiety FROM patients;

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 188

NOTICE: Hyperparameter batch_size takes value DEFAULT (1000)
NOTICE: Hyperparameter decay takes value DEFAULT (0.950000)
NOTICE: Hyperparameter learning_rate takes value DEFAULT (0.800000)
NOTICE: Hyperparameter max_iterations takes value DEFAULT (100)
NOTICE: Hyperparameter max_seconds takes value DEFAULT (0)
NOTICE: Hyperparameter optimizer takes value DEFAULT (gd)
NOTICE: Hyperparameter tolerance takes value DEFAULT (0.000500)
NOTICE: Hyperparameter seed takes value DEFAULT (0)
NOTICE: Hyperparameter verbose takes value DEFAULT (FALSE)
NOTICE: GD shuffle cache size 5502
ERROR: The model name "patient_linear_regression" already exists in gs_model_warehouse.

– Scenario 3: If the value in the FEATURE or TARGETS column is *, ERROR
is returned with the error cause:
openGauss=# CREATE MODEL patient_linear_regression USING linear_regression FEATURES *
TARGET trait_anxiety FROM
patients;
ERROR: FEATURES clause cannot be *
--
-------,
openGauss=# CREATE MODEL patient_linear_regression USING linear_regression FEATURES
second_attack,treatment TARGET * FROM patients;
ERROR: TARGET clause cannot be *

– Scenario 4: If the keyword TARGET is used in the unsupervised learning
method or is not applicable to the supervised learning method, ERROR is
returned with the error cause:
openGauss=# CREATE MODEL patient_linear_regression USING linear_regression FEATURES
second_attack,treatment FROM patients;
ERROR: Supervised ML algorithms require TARGET clause
--

CREATE MODEL patient_linear_regression USING linear_regression TARGET trait_anxiety FROM
patients; ERROR: Supervised ML algorithms require FEATURES clause

– Scenario 5: If the GUC parameter statement_timeout is set, the
statement that is executed due to training timeout will be terminated. In
this case, execute the CREATE MODEL statement. Parameters such as the
size of the training set, number of training rounds (iteration), early
termination conditions (tolerance and max_seconds), and number of
parallel threads (nthread) affect the training duration. When the
duration exceeds the database limit, the statement execution is
terminated and model training fails.

● Prediction phase
– Scenario 6: If the model name cannot be found in the system catalog, the

database reports ERROR:
openGauss=# select id, PREDICT BY patient_logistic_regression (FEATURES
second_attack,treatment) FROM patients;
ERROR: There is no model called "patient_logistic_regression".

– Scenario 7: If the data dimension and data type of the FEATURES task
are inconsistent with those of the training set, ERROR is reported with
the error cause. For example:
openGauss=# select id, PREDICT BY patient_linear_regression (FEATURES second_attack) FROM
patients;
ERROR: Invalid number of features for prediction, provided 1, expected 2
CONTEXT: referenced column: patient_linear_regression_pred
--

openGauss=# select id, PREDICT BY patient_linear_regression (FEATURES
1,second_attack,treatment) FROM patients;
ERROR: Invalid number of features for prediction, provided 3, expected 2
CONTEXT: referenced column: patient_linear_regression_pre

----End

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 189

8.3 Column Store
openGauss supports hybrid row-column store. Row store stores tables to disk
partitions by row, and column store stores tables to disk partitions by column.

Each storage model applies to specific scenarios. Select an appropriate model
when creating a table. Generally, openGauss is used for databases in online
transaction processing (OLTP) scenarios. By default, row store is used. Column
store is used only in online analytical processing (OLAP) scenarios where complex
queries are performed and the data volume is large. By default, a row-store table
is created. For details about differences between row store and column store, see
Figure 8-1.

Figure 8-1 Differences between row store and column store

In the preceding figure, the upper left part is a row-store table, and the upper
right part shows how the row-store table is stored on a disk; the lower left part is
a column-store table, and the lower right part shows how the column-store table
is stored on a disk.

Both row-store and column-store models have benefits and drawbacks.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 190

Storage
Model

Benefit Drawback

Row
store

Record data is stored
together. Data can be easily
inserted and updated.

All the columns of a record are read
after the SELECT statement is
executed even if only certain
columns are required.

Column
store

● Only the columns involved
in a query are read.

● Projection is efficient.
● Any column can serve as

an index.

● The selected columns need to be
reconstructed after the SELECT
statement is executed.

● Data cannot be easily inserted or
updated.

Generally, if a table contains many columns (called a wide table) and its query
involves only a few columns, column store is recommended. Row store is
recommended if a table contains only a few columns and a query involves most of
the columns.

Storage
Model

Application Scenario

Row store ● Point queries (simple index-based queries that only return a
few records)

● Scenarios requiring frequent addition, deletion, and
modification

● Frequent updates and few insertions.

Column store ● Statistical analysis queries (requiring a large number of
association and grouping operations)

● Ad hoc queries (using uncertain query conditions and unable
to utilize indexes to scan row-store tables)

● A large amount of data is inserted at a time.
● If a table contains a large number of columns, you are

advised to use a column-store table.
● If only a small number of columns (less than 50% of the

total) is queried each time, use a column-store table.

Syntax
CREATE TABLE table_name
 (column_name data_type [, ...])
 [WITH (ORIENTATION = value)];

Parameter Description
● table_name

Specifies the name of the table to be created.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 191

● column_name
Specifies the name of a column to be created in the new table.

● data_type
Specifies the data type of the column.

● ORIENTATION
Specifies the storage mode (row-store, column-store, or ORC) of table data.
This parameter cannot be modified once it is set.
Value range:
– ROW indicates that table data is stored in rows.

ROW applies to OLTP services and scenarios with a large number of point
queries or addition/deletion operations.

– COLUMN indicates that the data is stored in columns.
COLUMN applies to the data warehouse service, which has a large
amount of aggregation computing, and involves a few column
operations.

Example

If ORIENTATION is not specified, the table is a row-store table by default. For
example:

openGauss=# CREATE TABLE customer_test1
(
 state_ID CHAR(2),
 state_NAME VARCHAR2(40),
 area_ID NUMBER
);

-- Delete the table.
openGauss=# DROP TABLE customer_test1;

When creating a column-store table, you need to specify the ORIENTATION
parameter. For example:

openGauss=# CREATE TABLE customer_test2
(
 state_ID CHAR(2),
 state_NAME VARCHAR2(40),
 area_ID NUMBER
)
WITH (ORIENTATION = COLUMN);

-- Delete the table.
openGauss=# DROP TABLE customer_test2;

8.4 LLVM
Based on the query execution plan tree, with the library functions provided by the
Low Level Virtual Machine (LLVM), openGauss moves the process of determining
the actual execution path from the executor phase to the execution initialization
phase. In this way, problems such as function calling, logic condition branch
determination, and a large amount of data read that are related to the original
query execution are avoided, to improve the query performance.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 192

LLVM dynamic compilation can be used to generate customized machine code for
each query to replace original common functions. Query performance is improved
by reducing redundant judgment conditions and virtual function calls, and by
making local data more accurate during actual queries.

LLVM needs to consume extra time to pre-generate intermediate representation
(IR) and compile it into codes. Therefore, if the data volume is small or if a query
itself consumes less time, the performance deteriorates.

Application Scenarios
● Expressions supporting LLVM

The query statements that contain the following expressions support LLVM
optimization:

a. Case...when...
b. IN
c. Bool

▪ And

▪ Or

▪ Not

d. BooleanTest

▪ IS_NOT_UNKNOWN: corresponds to SQL statement IS NOT
UNKNOWN.

▪ IS_UNKNOWN: corresponds to SQL statement IS UNKNOWN.

▪ IS_TRUE: corresponds to SQL statement IS TRUE.

▪ IS_NOT_TRUE: corresponds to SQL statement IS NOT TRUE.

▪ IS_FALSE: corresponds to SQL statement IS FALSE.

▪ IS_NOT_FALSE: corresponds to SQL statement IS NOT FALSE.

e. NullTest

▪ IS_NOT_NULL

▪ IS_NULL

f. Operator
g. Function

▪ lpad

▪ substring

▪ btrim

▪ rtrim

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 193

▪ length

h. Nullif

Supported data types for expression computing are bool, tinyint, smallint, int,
bigint, float4, float8, numeric, date, time, timetz, timestamp, timestamptz,
interval, bpchar, varchar, text, and oid.
Consider using LLVM only if expressions are used in the following content in a
vectorized executor: filter in the Scan node; complicate hash condition,
hash join filter, and hash join target in the Hash Join node; filter and join
filter in the Nested Loop node; merge join filter and merge join target in
the Merge Join node; and filter in the Group node.

● Operators supporting LLVM

a. Join: HashJoin
b. Agg: HashAgg
c. Sort

Where HashJoin supports only Hash Inner Join, and the corresponding hash
cond supports comparisons between int4, bigint, and bpchar. HashAgg
supports sum and avg operations of bigint and numeric data types. Group By
statements supports int4, bigint, bpchar, text, varchar, timestamp, and
count(*) aggregation operation. Sort supports only comparisons between int4,
bigint, numeric, bpchar, text, and varchar data types. Except the preceding
operations, LLVM cannot be used. You can use the explain performance tool
to check whether LLVM can be used.

Non-applicable Scenarios
● LLVM does not apply to tables that have small amount of data.
● Query jobs with a non-vectorized execution path cannot be generated.

Other Factors Affecting LLVM Performance
The LLVM optimization effect depends on not only operations and computing in
the database, but also the selected hardware environment.

● Number of C functions called by expressions
CodeGen does not implement full-expression calculation, that is, some
expressions use CodeGen while others invoke original C code for calculation.
In an entire calculation process, if the later calculation method plays a
dominate role, using LLVM may deteriorate the performance. By setting
log_min_message to DEBUG1, you can view expressions that directly invoke
C code.

● Memory resources
One of the key LLVM features is to ensure the locality of data, that is, data
should be stored in registers as much as possible. Data loading should be
reduced at the same time. Therefore, when using LLVM, value of work_mem
must be set as large as required to ensure that code is implemented in the
memory. Otherwise, performance deteriorates.

● Cost estimation
LLVM realizes a simple cost estimation model. You can determine whether to
use LLVM for the current node based on the tables involved in the node

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 194

computing. If the optimizer underestimates the actual number of rows
involved, gains cannot be achieved as expected. And vice versa.

Suggestions for Using LLVM
Currently, LLVM is enabled by default in the database kernel, and users can
configure it as required. The overall suggestions are as follows:

1. Set work_mem to an appropriate value as large as possible. If much data is
flushed to disks, you are advised to disable LLVM by setting enable_codegen
to off.

2. Set codegen_cost_threshold to an appropriate value (the default value is
10000). Ensure that LLVM is not used when the data volume is small. After
codegen_cost_threshold is set, the database performance may deteriorate
due to the use of LLVM. In this case, you are advised to increase the
parameter value.

3. If a large number of C functions are called, you are advised not to use the
LLVM function.

NO TE

If resources are robust, the larger the data volume is, the better the performance
improvement is.

8.5 Ustore
The Ustore storage engine, also called the in-place update storage engine, is a
new storage mode added to the openGauss kernel. The row storage engine used
by the earlier openGauss versions is in append update mode. Append update has
good performance in service addition, deletion, and heap only tuple (HOT) update
(that is, update on the same page). However, recycling is not efficient in cross-
data-page non-HOT update scenarios. Therefore, Ustore comes into being.

Design Principle
Ustore stores valid data of the latest version and junk data of earlier versions
separately. The valid data of the latest version is stored on the data page, and an
independent UNDO space is created for managing the junk data of earlier versions
in a unified manner. Therefore, the data space does not expand due to frequent
updates, and the junk data is recycled more efficiently.

Ustore adopts the NUMA-aware UNDO subsystem design, which enables the
UNDO subsystem to be effectively expanded on the multi-core platform. In
addition, Ustore adopts the multi-version index technology to clear indexes and
improve the efficiency of reclaiming and reusing storage space.

Ustore works with the UNDO space to implement more efficient and
comprehensive flashback query and recycle bin mechanisms, quickly roll back
misoperations, and provide abundant enterprise-level functions for openGauss.

Core Advantages
● High performance: For services with different loads, such as insertion,

update, and deletion, the performance and resource usage are relatively

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 195

balanced. The in-place update mode is recommended in frequent update
scenarios, featuring higher and more stable performance. It is suitable for
typical OLTP service scenarios that require short transactions, frequent
updates, and high performance.

● Efficient storage: Maximizes in-place update, greatly saving space. Rollback
segments and data pages are stored separately, providing more efficient and
stable I/O usage. The UNDO subsystem uses the NUMA-aware design and
has better multi-core scalability. The UNDO space is allocated and reclaimed
in a unified manner, improving the reuse efficiency and storage space usage.

● Fine-grained resource control: The Ustore engine provides multi-dimensional
transaction monitoring. It monitors transaction running based on the
transaction running duration, size of the UNDO space used by a single
transaction, and overall UNDO space limit to prevent abnormal and
unexpected behaviors. This feature enables database administrators to
regulate and restrict the use of database system resources.

Ustore provides stable performance in scenarios where data is frequently updated,
enabling service systems to run more stably and adapt to more service scenarios
and workloads, especially core financial service scenarios that have higher
requirements on performance and stability.

Usage Guide
Ustore coexists with the original append update storage engine (Astore). Ustore
shields the implementation details of the storage layer. The SQL syntax is basically
the same as that of the original Astore storage engine. The only difference lies in
table creation and index creation.

● Table creation
Ustore contains undo logs. Before creating a table, you need to set
undo_zone_count in the postgresql.conf file. This parameter indicates the
number of undo logs. The recommended value is 16384, that is,
undo_zone_count=16384. After the configuration is complete, restart the
database.
[postgresql.conf]
undo_zone_count=16384

– Method 1: Specify the storage engine type when creating a table.
create table test(id int, name varchar(10)) with (storage_type=ustore);

– Method 2: Specify Ustore by configuring a GUC parameter.

Step 1 Before starting a database, set enable_default_ustore_table to on in
postgresql.conf to specify that Ustore is used when a user creates a table by
default.

[postgresql.conf]

enable_default_ustore_table=on

Step 2 Create a table.
create table test(id int, name varchar(10));

----End

● Index creation

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 196

The index used by Ustore is UBtree. UBtree is developed for the Ustore
storage engine and is the only index type supported by Ustore.
Taking the following table test as an example, add an index UBtree to the
age column of the test table.
openGauss=# \d+ test
 Table "public.test"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+-----------------------+-----------+----------+--------------+-------------
 id | integer | | plain | |
 age | integer | | plain | |
 name | character varying(10) | | extended | |

– Method 1: If the index type is not specified, a UBtree index is created
by default.
openGauss=# create index ubt_idx on test(age);
openGauss=# \d+ test
 Table "public.test"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+-----------------------+-----------+----------+--------------+-------------
 id | integer | | plain | |
 age | integer | | plain | |
 name | character varying(10) | | extended | |
Indexes:
 "ubt_idx" ubtree (age) WITH (storage_type=USTORE) TBALESPACE pg_default
Has OIDs: no
Options: orientation=row, storage_type=ustore, compression=no

– Method 2: When creating an index, use the using keyword to set the
index type to ubtree.
openGauss=# create index ubt_idx on test using ubtree(age);
openGauss=# \d+ test
 Table "public.test"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+-----------------------+-----------+----------+--------------+-------------
 id | integer | | plain | |
 age | integer | | plain | |
 name | character varying(10) | | extended | |
Indexes:
 "ubt_idx" ubtree (age) WITH (storage_type=USTORE) TBALESPACE pg_default
Has OIDs: no
Options: orientation=row, storage_type=ustore, compression=no

8.6 MOT
openGauss introduces the memory-optimized table (MOT) storage engine, which
is a transactional row store and is optimized for multi-core and large-memory
servers. MOT is the most advanced production-level feature (Beta version) of
openGauss databases. It provides higher performance for transactional workloads.
MOT fully supports ACID features, especially strict persistence and high
availability. Enterprises can use MOT in mission-critical and performance-sensitive
online transaction processing (OLTP) to achieve high performance, high
throughput, predictable low latency, and high utilization of multi-core servers.
MOT is especially suitable for running on modern servers with multi-channel and
multi-core processors, such as Huawei TaiShan servers based on ARM/Kunpeng
processors and Dell or similar x86 servers.

MOT Features and Benefits
MOT has significant advantages in terms of performance (query and transaction
latency), scalability (throughput and concurrency), and in some cases, even costs
(high resource utilization).

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 197

● Low latency: provides fast query and transaction response time.
● High throughput: supports peak and continuous high user concurrency.
● High resource utilization: fully utilizes hardware.

Applications that use MOT can reach 2.5 to 4 times the throughput compared to
applications that do not use MOT. For example, you can perform the TPC-C
benchmark test (interactive transactions and synchronous logs) on Huawei
TaiShan servers based on ARM/Kunpeng processors and on Dell x86 servers based
on Intel Xeon processors. The throughput gain provided by MOT reaches 2.5 times
on a 2-socket server, 3.7 times on a 4-socket server, and 4.8 million tpmC on a 4-
socket 256-core ARM server.

In the TPC-C benchmark test, you can find that MOT provides lower latency and
reduces the transaction response time by 3 to 5.5 times.

The high load and high contention situation is a recognized problem for all
industry-leading databases, and MOT can make extremely high use of server
resources in this situation. After MOT is used, the resource utilization of 4-socket
servers reaches 99%, which is far higher than that of other databases in the
industry.

This capability is especially obvious and important on modern multi-core servers.

Key MOT Technologies

The key technologies of MOT are as follows:

● Memory-optimized data structure: To achieve high concurrent throughput and
predictable low latency, all data and indexes are stored in the memory, no
intermediate page buffer is used, and the lock with the shortest duration is
used. The data structure and all algorithms are optimized for memory design.

● Lock-free transaction management: While ensuring strict consistency and data
integrity, MOT uses optimistic policies to achieve high concurrency and high
throughput. During a transaction, the MOT does not lock any version of the
data row being updated, greatly reducing contention in some large memory
systems. Optimistic concurrency control (OCC) in transactions is implemented
without locks. All data modification is performed in the part of memory
dedicated to private transactions (also called private transactional memory).
This means that during a transaction, related data is updated in the private
transactional memory, thereby implementing lock-free read and write. In
addition, a lock is locked for a short time only in the commit phase.

● Lock-free index: The data and indexes of memory tables are stored in the
memory. Therefore, it is important to have an efficient index data structure
and algorithm. The MOT index mechanism is based on the state-of-the-art
Masstree, which is a fast and scalable Key Value (KV) storage index for multi-
core systems and is implemented using the Trie of the B+ tree. In this way,
excellent performance on multi-core servers can be achieved in the case of
high-concurrency workloads. In addition, MOT uses advanced technologies to
optimize performance, such as lock optimization, cache awareness, and
memory prefetch.

● NUMA-aware memory management: MOT supports NUMA-aware. The
NUMA-aware algorithm enhances the performance of data layout in memory
by enabling threads to access the memory that is physically connected to the

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 198

core where the threads run. This is handled by the memory controller and
does not require additional jumps through the use of interconnection, such as
Intel QPI. The intelligent memory control module of MOT pre-allocates
memory pools for various memory objects to improve performance, reduce
locks, and ensure stability. Transactional memory is always allocated to
NUMA local nodes. After the transaction ends, memory is released to the
pool. In addition, system memory allocation (OS malloc) is used as less as
possible in transactions to avoid unnecessary locks.

● Efficient persistence: Logs and checkpoints are key capabilities for disk
persistence and one of the key requirements of ACID (D stands for durability).
Currently, all disks (including SSDs and NVMe disks) are obviously slower than
the memory. Therefore, persistence is the bottleneck of the in-memory
database engine. As a memory-based storage engine, the persistence design
of MOT must implement various algorithm optimizations to ensure that the
designed speed and throughput targets can be achieved while persistence is
implemented. These optimizations include:
– Parallel logging, supported by all openGauss disk-based tables.
– Log buffer and lock-free transaction preparation for each transaction.
– Incremental update, that is, only changes are recorded.
– NUMA-aware group commit, in addition to synchronous and

asynchronous logging.
– State-of-the-art checkpointing asynchronously using logical consistency

(CALC), minimizing memory and computing overhead.
● High SQL coverage and function set: MOT uses extended PostgreSQL Foreign

Data Wrappers (FDWs) and indexes to support almost the entire SQL scope,
including stored procedures, user-defined functions, and system function calls.

● Native PREPARE statements for query: With the PREPARE client commands,
users can execute query and transaction statements interactively. These
commands have been pre-compiled into native execution formats, also known
as Code-Gen or Just-in-Time (JIT) compilation. In this way, the performance
can be improved by 30% on average. If possible, apply compilation and
lightweight execution; otherwise, use the standard execution path to process
the applicable query. The Cache Plan module has been optimized for OLTP.
Different binding settings are used in the entire session and compilation
results are reused in different sessions.

● Seamless integration between MOT and openGauss: MOT is a high-
performance memory-optimized storage engine integrated in the openGauss
package. The MOT storage engine and disk-based storage engine coexist to
support multiple application scenarios. In addition, the MOT reuses auxiliary
database services, such as WAL, replication, checkpoint, and HA. Users can
benefit from unified deployment, configuration, and access of disk-based
tables and MOTs. Users can flexibly and cost-effectively select a storage
engine based on their specific needs. For example, performance-sensitive data
that causes bottlenecks is stored in memory.

MOT Application Scenarios

MOT can significantly improve the overall performance of applications based on
load characteristics. MOT improves transaction processing performance by
improving the efficiency of data access and transaction execution, and minimizing

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 199

redirections by eliminating locks and lock memory contention between
concurrently executed transactions.

MOT is fast not only because it is in memory, but also because it is optimized
around concurrent memory usage. Data storage, access, and processing
algorithms are designed from scratch to take advantage of the state-of-the-art
technologies for in-memory and highly concurrent computing.

openGauss allows applications to freely combine MOTs and standard disk-based
tables. MOT is especially useful for enabling the most active, contention-intensive,
and performance-sensitive application tables that have proven to be bottlenecks,
and tables that require predictable low-latency access and high throughput.

MOT can be used in a variety of applications, such as:

● High-throughput transaction processing: This is the main scenario where MOT
is used because it supports massive transactions and requires low latency of
each single transaction. The representative applications include the real-time
decision-making system, payment system, financial instrument transactions,
sports lottery, mobile games, advertisement placement, and the like.

● Performance acceleration: Tables with high contention can benefit from MOT,
even if the table is a disk-based table. The transformation of such tables
(other than related tables and tables referenced together in queries and
transactions) results in significant performance improvement due to lower
latency, fewer contentions and locks, and increased server throughput
capabilities.

● Elimination of mid-tier caching: Cloud computing and mobile applications
tend to have periodic or peak high workloads. In addition, more than 80% of
the loads of many applications are read loads with frequent repeated queries.
Typically, a mid-tier caching layer is deployed for applications to meet the
individual requirements of peak loads and to reduce response latency and
provide the best user experience. Such an additional layer increases the
complexity and time of development as well as operational costs. MOT
provides a good alternative solution, which simplifies the application
architecture, shortens the development cycle, and reduces the CAPEX and
OPEX through consistent high-performance data storage.

● Large-scale stream data extraction: The MOT can meet requirements of
extracting large-scale stream data in the cloud (for mobility, M2M, and the
IoT), transactional processing (TP), analytical processing (AP), and machine
learning (ML). MOT is particularly good at extracting large amounts of data
from many different sources at once, continuously and quickly. This data can
be processed, transformed, and moved later in slower disk-based tables. In
addition, MOT can query consistent and latest data to obtain real-time
results. In IoT and cloud computing applications with many real-time data
streams, there is usually dedicated data ingestion and processing. For
example, an Apache Kafka cluster can be used to extract data of 100,000
events per second with a latency of 10 ms. A periodic batch processing task
collects data, converts the data format, and stores the data in a relational
database for further analysis. MOT can support such a scenario (and
eliminate a separate data processing layer) by storing data streams directly in
relational MOTs to prepare for analysis and decision making. This enables
faster data collection and processing, avoids costly tiering and slow batch
processing, improves consistency, increases the timeliness of data analysis,
and reduces the total cost of ownership (TCO).

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 200

● Reduced TCO: 30% to 90% TCO can be saved by improving resource
utilization and eliminating the intermediate layer.

Unsupported Data Types
● UUID
● User-Defined Type (UDF)
● Array data type
● NVARCHAR2(n)
● Clob
● Name
● Blob
● Raw
● Path
● Circle
● Reltime
● Bit varying(10)
● Tsvector
● Tsquery
● JSON
● Box
● Text
● Line
● Point
● LSEG
● POLYGON
● INET
● CIDR
● MACADDR
● Smalldatetime
● BYTEA
● Bit
● Varbit
● OID
● Money
● Any unlimited varchar/character varying
● HSTORE

MOT Usage

Step 1 Grant permissions to a user.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 201

The following describes how to grant a database user the permission to access the
MOT storage engine. This operation is performed only once for each database user
and is usually performed during initial configuration.

NO TE

MOT is integrated with the openGauss database through FDWs. Therefore, user permissions
need to be authorized.

To enable a specific user to create and access MOTs (through DDL, DML, and
SELECT operations), execute the following statement only once:

GRANT USAGE ON FOREIGN SERVER mot_server TO <user>;

All keywords are case insensitive.

Step 2 Create or delete an MOT.

The statements for creating and deleting MOTs are different from those for
creating and deleting disk-based tables in openGauss. Except that, the syntax of
all other SELECT, DML, and DDL commands is the same for MOTs and openGauss
disk-based tables.

● Create an MOT.
create FOREIGN table test(x int) [server mot_server];

● In the preceding statement:
– Always use the FOREIGN keyword to reference the MOT.
– When creating a MOT, [server mot_server] is optional because the MOT

is an integrated engine, not a standalone server.
– In the preceding example, an MOT named test (containing an integer

column named x) is created. Another example is provided in the next
step "Create an index for an MOT."

– If incremental checkpoints are enabled in postgresql.conf, MOTs cannot
be created. Therefore, set enable_incremental_checkpoint to off before
creating an MOT.

● Delete the test MOT.
drop FOREIGN table test;

Step 3 Create an index for an MOT.

Standard openGauss statements for creating and deleting indexes are supported.

For example:

create index text_index1 on test(x) ;

Create an ORDER table for TPC-C and create an index.

create FOREIGN table bmsql_oorder (
 o_w_id integer not null,
 o_d_id integer not null,
 o_id integer not null,
 o_c_id integer not null,
 o_carrier_id integer,
 o_ol_cnt integer,
 o_all_local integer,
 o_entry_d timestamp,
 primary key (o_w_id, o_d_id, o_id)
);
create index bmsql_oorder_index1 on bmsql_oorder(o_w_id, o_d_id, o_c_id, o_id) ;

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 202

NO TE

You do not need to specify the FOREIGN keyword before the MOT name because it is used
only in the commands for creating and deleting tables.

----End

Converting a Disk-based Table into an MOT
The direct conversion of disk-based tables into MOTs is not yet possible, meaning
that no ALTER TABLE statement yet exists for converting a disk-based table into an
MOT.

The following describes how to manually perform a few steps in order to convert a
disk-based table into an MOT, as well as how the gs_dump tool is used to export
data and the gs_restore tool is used to import data.

● Prerequisite Check
Check whether the disk-based table to be converted to MOT contains all
required columns.
Check whether the table contains any unsupported column data types, as
described in the Unsupported Data Types section.
If any specific column data type is not supported, you are advised to first
create a disk-based table with the updated column data types. This table is
the same as the original table, except that all the unsupported types have
been converted into supported types.
Afterwards, use the following script to export this disk-based table and then
import it into an MOT.

● Conversion
To covert a disk-based table into an MOT, perform the following:

a. Suspend application activities.
b. Use gs_dump tool to dump the table's data into a physical file on the

disk. Make sure to use the data only.
c. Rename your original disk-based table.
d. Create an MOT with the same table name and schema. Make sure to use

the create FOREIGN keyword to specify that it will be an MOT.
e. Use gs_restore to load/restore data from the disk file into the database

table.
f. Visually/Manually verify that all the original data was imported correctly

into the new MOT. An example is provided below.
g. Resume application activities.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 203

NO TICE

In this way, since the table name remains the same, application queries and
relevant database stored procedures will be able to access the new MOT
seamlessly without code changes. Please note that MOT does not support
cross-engine multi-table queries (such as by using Join, Union and sub-query)
and cross-engine multi-table transactions. Therefore, if an original table is
accessed somewhere in a multi-table query, stored procedure or transaction,
you must either convert all related disk-based tables into MOTs or alter the
relevant code in the application or the database.

● Conversion example
Assume that you have a database named benchmarksql containing a disk-
based table named customer to be migrated into an MOT.
To migrate the customer table into an MOT, perform the following:

a. Check your source table column types. Verify that all types are supported
by the MOT. For details, refer to the Unsupported Data Types section.
benchmarksql-# \d+ customer
 Table "public.customer"
 Column | Type | Modifiers | Storage | Stats target | Description
--------+---------+-----------+---------+--------------+-------------
 x | integer | | plain | |
 y | integer | | plain | |
Has OIDs: no
Options: orientation=row, compression=no

b. Check your source table data.
benchmarksql=# select * from customer;
 x | y
---+---
 1 | 2
 3 | 4
(2 rows)

c. Dump table data only by using gs_dump.
$ gs_dump -Fc benchmarksql -a --table customer -f customer.dump -p 16000
gs_dump[port='15500'][benchmarksql][2020-06-04 16:45:38]: dump database benchmarksql
successfully
gs_dump[port='15500'][benchmarksql][2020-06-04 16:45:38]: total time: 332 ms

d. Rename the source table name.
benchmarksql=# alter table customer rename to customer_bk;
ALTER TABLE

e. Create an MOT that is totally the same as the source table.
benchmarksql=# create foreign table customer (x int, y int);
CREATE FOREIGN TABLE
benchmarksql=# select * from customer;
 x | y
---+---
(0 rows)

f. Import the source dump data into the new MOT.
$ gs_restore -C -d benchmarksql customer.dump -p 16000
restore operation successful
total time: 24 ms
Check that the data was imported successfully.
benchmarksql=# select * from customer;
 x | y
---+---
 1 | 2
 3 | 4
(2 rows)

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 204

benchmarksql=# \d
 List of relations
 Schema | Name | Type | Owner | Storage
--------+-------------+---------------+--------+----------------------------------
 public | customer | foreign table | aharon |
 public | customer_bk | table | aharon | {orientation=row,compression=no}
(2 rows)

8.7 Fully-encrypted Database
The fully-encrypted database aims to protect privacy throughout the data lifecycle.
In this way, data is always in ciphertext during transmission, computing, and
storage regardless of the service scenario and environment. After the data owner
encrypts data on a client and sends the encrypted data to the server, attackers
cannot obtain valuable information even if the attackers steal user data by
exploiting system vulnerabilities. In this way, data privacy is protected.

The entire service data flow is in ciphertext during data processing, so the
following can be implemented by using a fully-encrypted database:

● Protects data privacy and security throughout the lifecycle on the cloud.
Attackers cannot obtain valid information from the database server regardless
of the data status.

● Helps cloud service providers gain third-party trust. Service administrators,
O&M administrators in enterprise service scenarios, and application
developers in consumer cloud services can keep keys in their hands so that
high-privilege users cannot obtain valid data.

● Enables cloud database services to better comply with personal privacy
protection laws and regulations with the help of the fully-encrypted database.

Currently, the fully-encrypted database supports two connection modes: gsql and
JDBC. The following describes how to use the database in the two connection
modes.

Connecting to a Fully-encrypted Database
● Connect to the database using GSQL and run the following command to

enable the full encryption function:
gsql -p PORT -d postgres -r -C

Parameters:
– -p: port number.
– -d: database name.
– –C: enables full encryption.

● To support JDBC operations on a fully-encrypted database, set enable_ce to 1.

Creating a User Key
A fully-encrypted database has two types of keys: client master key (CMK) and
column encryption key (CEK). The CMK is used to encrypt the CEK, and the CEK is
used to encrypt user data.

The sequence and dependency for creating keys are as follows: Create a CMK and
then a CEK.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 205

● Create a CMK and a CEK in the GSQL environment.
[Creating a CMK]
CREATE CLIENT MASTER KEY client_master_key_name WITH (KEY_STORE = key_store_name,
KEY_PATH = "key_path_value", ALGORITHM = algorithm_type);

Parameters:
– client_master_key_name

Specifies the key name. In the same namespace, the value of this
parameter must be unique.
Value range: a string. It must comply with the identifier naming
convention.

– KEY_STORE
Specifies the key tool or component that manages CMKs. Currently, only
local KMS is supported.

– KEY_PATH
KEY_STORE manages multiple CMKs. The KEY_PATH option is used to
uniquely identify a CMK in KEY_STORE. The value is similar to that of
key_path_value.

– ALGORITHM
Specifies the type of the encryption algorithm used to encrypt CEKs.
Value range: RSA_2048, RSA3072, and SM2.

NO TE

Key path: By default, local KMS generates, reads, and deletes key files in
$LOCALKMS_FILE_PATH. You can manually configure this environment variable.
However, you do not need to configure this environment variable. If
$LOCALKMS_FILE_PATH fails to be obtained, local KMS attempts to obtain
$GAUSSHOME/etc/localkms/. If the path exists, it is used as the key storage path.
Key-related files: When the CREATE CMK syntax is used, local KMS creates four files
related to key storage. For example, when KEY_PATH is set to key_path_value, the
four files are key_path_value.pub, key_path_value.pub.rand, key_path_value.priv
and key_path_value.priv.rand.
Therefore, to successfully create key-related files, ensure that no file with the same
name as the key-related files exists in the key path.

[Creating a CEK]
CREATE COLUMN ENCRYPTION KEY column_encryption_key_name WITH(CLIENT_MASTER_KEY =
client_master_key_name, ALGORITHM = algorithm_type, ENCRYPTED_VALUE = encrypted_value);

Parameters:
– column_encryption_key_name

Specifies the key name. In the same namespace, the value of this
parameter must be unique.
Value range: a string. It must comply with the identifier naming
convention.

– CLIENT_MASTER_KEY
Specifies the CMK used to encrypt the CEK.
The value is the name of a CMK. The CMK object is created using the
CREATE CLIENT MASTER KEY syntax.

– ALGORITHM
Specifies the encryption algorithm used by the CEK.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 206

The value can be AEAD_AES_256_CBC_HMAC_SHA256,
AEAD_AES_128_CBC_HMAC_SHA256, or SM4_SM3.

– ENCRYPTED_VALUE (optional)
Specifies the key password defined by the user. The key password
contains 28 to 256 characters. The security strength of a key containing
28 characters complies with AES128. If AES256 is used, the key password
must contain 39 characters. If this parameter is not specified, a 256-bit
key is automatically generated.

NO TE

SM2, SM3, and SM4 are Chinese cryptographic algorithms. To avoid legal risks, these
algorithms must be used together. If you specify the SM4 algorithm to encrypt CEKs
when creating a CMK, you must specify the SM3 and SM4 algorithms (SM4_SM3) to
encrypt data when creating CEKs.

[Example: In the GSQL environment]
-- Create the $GAUSSHOME/etc/localkms/ directory.
mkdir -p $GAUSSHOME/etc/localkms/
-- Use a privileged account to create a common user named alice.
 openGauss=# CREATE USER alice PASSWORD '********';
-- Use the account of common user alice to connect to the fully-encrypted database and execute the
syntax.
 gsql -p 57101 postgres -U alice -r -C
-- Create a CMK object.
openGauss=> CREATE CLIENT MASTER KEY alice_cmk WITH (KEY_STORE = localkms , KEY_PATH =
"key_path_value", ALGORITHM = RSA_2048);
-- Create a CEK object.
 openGauss=> CREATE COLUMN ENCRYPTION KEY ImgCEK WITH VALUES (CLIENT_MASTER_KEY =
alice_cmk, ALGORITHM = AEAD_AES_256_CBC_HMAC_SHA256);

● Create a CMK and a CEK in the JDBC environment.
// Create a CMK.
 Connection conn = DriverManager.getConnection("url","user","password");Statement stmt =
conn.createStatement();int rc = stmt.executeUpdate("CREATE CLIENT MASTER KEY ImgCMK1 WITH
(KEY_STORE = localkms , KEY_PATH = "key_path_value" , ALGORITHM = AES_256_CBC);");

// Create a CEK.
 int rc2 = stmt.executeUpdate("CREATE COLUMN ENCRYPTION KEY ImgCEK1 WITH VALUES
(CLIENT_MASTER_KEY = ImgCMK1, ALGORITHM = AEAD_AES_256_CBC_HMAC_SHA256);");

Creating an Encrypted Table
After creating the CMK and CEK, you can use the CEK to create an encrypted
table. An encrypted table can be created in two modes: random encryption and
deterministic encryption.

● Create an encrypted table in the GSQL environment.
[Example]
openGauss=# CREATE TABLE creditcard_info (id_number int, name text encrypted with
(column_encryption_key = ImgCEK, encryption_type = DETERMINISTIC),credit_card varchar(19)
encrypted with (column_encryption_key = ImgCEK, encryption_type = DETERMINISTIC));

Parameters:
For the encryption type in the ENCRYPTED WITH constraint, the value of
encryption_type_value can be DETERMINISTIC or RANDOMIZED.

● Create an encrypted table in the JDBC environment.
int rc3 = stmt.executeUpdate("CREATE TABLE creditcard_info (id_number int, name varchar(50)
encrypted with (column_encryption_key = ImgCEK, encryption_type = DETERMINISTIC),credit_card
varchar(19) encrypted with (column_encryption_key = ImgCEK1, encryption_type =
DETERMINISTIC));");

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 207

Insert data into the encrypted table and query the data.
After an encrypted table is created, you can insert and view data in the encrypted
table in fully-encrypted database mode (by setting connection parameter -C).
When a common environment is used (the connection parameter -C is disabled),
the encrypted table cannot be operated, and only ciphertext data can be viewed in
the encrypted table.

● In the GSQL environment, insert data into the encrypted table and view
the data.
openGauss=# INSERT INTO creditcard_info VALUES (1,'joe','6217986500001288393');
 INSERT 0 1
 openGauss=# INSERT INTO creditcard_info VALUES (2, 'joy','6219985678349800033');
 INSERT 0 1
 openGauss=# select * from creditcard_info where name = 'joe';
 id_number | name | credit_card
 -----------+------+---------------------
 1 | joe | 6217986500001288393
 (1 row)

NO TE

When a non-encrypted client is used to view the data in the encrypted table, the data
is displayed in ciphertext.

openGauss=# select id_number,name from creditcard_info;
 id_number | name
 -----------+---
 1 | \x011aefabd754ded0a536a96664790622487c4d36
 2 | \x011aefabd76853108eb406c0f90e7c773b71648f
 (2 rows)

● In the JDBC environment, insert data into the encrypted table and view
the data.
// Insert data.
 int rc4 = stmt.executeUpdate("INSERT INTO creditcard_info VALUES
(1,'joe','6217986500001288393');");
// Query the encrypted table.
 ResultSet rs = null;
 rs = stmt.executeQuery("select * from creditcard_info where name = 'joe';");
// Close the statement object.
 stmt.close();

The preceding describes how to use the fully-encrypted database feature. For
details, see the corresponding sections in the official document.

8.8 DCF
Distributed Consensus Framework (DCF) implements typical algorithms such as
Paxos and Raft to solve distribution consistency problems. DCF provides
capabilities such as log replication, cluster HA, and automatic leader election, and
can forcibly start the minority and dynamically adjust traffic for log replication. In
addition, multiple Paxos-based roles are provided and can be adjusted.

DCF is a high-performance, highly mature, reliable, scalable, and easy-to-use
independent basic library. Other systems can easily interconnect with DCF through
interfaces to obtain the strong consistency, high availability, and automatic
disaster recovery capabilities provided by the Paxos algorithm.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 208

Architecture

Figure 8-2 shows the functional architecture of the DCF, including the algorithm
modules, storage module, communication module, and service layer.

Figure 8-2 Functional architecture of the DCF

● Algorithm modules:
Algorithm modules are implemented based on the Multi-Paxos protocol.
Based on the service scenarios, and requirements for high performance and
ecosystem, DCF has made many function extensions and performance
optimization to enrich the functions compared with the basic Multi-Paxos
protocol, and the performance is significantly improved in multiple
deployment scenarios. It mainly includes a leader election module, a log
replication module, a metadata module, and a cluster management module.

● Storage module:
For specific service scenarios and ultimate performance, the DCF extracts a set
of public interfaces for log storage and implements a default high-
performance storage module. For specific scenarios or users who have
ultimate performance and cost requirements, you can connect the existing
storage system to the log storage interface of DCF to meet specific
requirements. This is one of the advantages of DCF as an independent third-
party library.

● Communication module:

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 209

The communication module is implemented based on the Message Exchange
Component (MEC) and provides the communication capability between DCF
instances and the asynchronous event processing framework. The main
features are as follows: multiple extensible communication protocols, unicast,
broadcast, and loopback sending interfaces, asynchronous message processing
framework, multi-channel mechanism, multi-priority queue, compression, and
batch sending.

● Service layer:

The service layer is the basis for running the entire DCF and provides various
basic services required for program running. For example, lock, asynchronous
task scheduling, thread pool service, and timer.

Features
● Nodes can be added and deleted online, and the leader role can be

handed over online.

Based on the standard Multi-Paxos, the DCF supports online node addition
and deletion, and leader handover. This is more suitable for building a
development ecosystem in a wide range of service scenarios.

● Priority-based leader election and policy-based majority are supported.

– Policy-based majority: In the classic Paxos theory, data can be submitted
after the majority reaches a consensus. However, the majority is not
specific and it cannot be guaranteed that one or some nodes can obtain
complete data. In actual applications, the nodes that are geographically
close to each other have strongly consistent data, but the nodes that are
geographically far away from each other are always in a non-strongly
consistent state. These nodes cannot be activated as the primary node for
city-level disaster recovery. The policy-based majority mechanism enables
users to dynamically configure one or more nodes to be strongly
consistent and can be activated as the primary node immediately for
disaster recovery.

– Priority-based leader election: You can specify the priority of each node.
The DCF elects a leader node strictly according to the specified priority.
The node with a lower priority is activated only when all the nodes with a
higher priority are unavailable.

● Diversified node roles are provided.

In addition to typical roles such as Leader, Follower, and Candidate, the DCF
also supports customized roles, for example, the Passive role (with logs, with
data, without the right to be elected, and not participating in the majority
voting) and the Log role (with logs, without data, without the right to be
elected, and participating in the mkajority voting). With these node roles, DCF
supports synchronous and hybrid (synchronous/asynchronous) multi-cluster
deployment.

● Batch & Pipeline

– Batch: The DCF supports multi-level batch operations, including:

▪ Combine multiple logs into a single message for sending.

▪ Combine multiple logs for writing to the disk.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 210

▪ Combine multiple logs for replication.

Batch operations can effectively reduce the extra loss due to the message
granularity and improve the throughput.

– Pipeline: Before the result of a message is returned, the next message is
concurrently sent to the corresponding node. By increasing the number of
concurrent messages (pipelines), the latency of each single concurrent
request can be effectively reduced and the performance can be improved.
DCF uses the asynchronous mode in multiple phases, such as log
persistence, network sending, and log replication, to maximize the
pipeline performance.

● Efficient flow control algorithm
Batching and pipelining can improve the throughput and performance of the
entire system. However, if the batch size is too large, the latency of a single
request is too long. As a result, the number of concurrent requests is too
large, affecting the throughput and request latency. Therefore, the DCF
designs a set of efficient and adaptive flow control algorithms, automatically
detects parameters such as the network bandwidth, network sending latency,
and number of concurrent requests, and adjusts batch and pipeline
parameters to control service traffic injection.
Figure 8-3 shows the process of the flow control algorithm.

Figure 8-3 Process of the flow control algorithm

The core algorithm process is as follows:

a. The primary DCF node periodically samples and calculates consensus
information, including the end-to-end consensus latency, end-to-end
consensus log bandwidth, and overall log playback bandwidth.

b. Calculate a new control value: The primary node obtains the performance
change trend based on the sampling result and historical results, adjusts
the control direction and step based on the historical control value and
change trend, and calculates a new control value for better performance.

c. Update the control value after the control period expires.
d. Continuously apply the control value to service traffic to control the

frequency of service traffic injection.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 211

Example
Assume that there are three nodes in the cluster and their IP addresses are
192.168.0.11, 192.168.0.12, and 192.168.0.13. The node IDs are 1, 2, and 3, and
the node roles are Leader, Follower, and Follower.

To use the DCF component, you need to set enable_dcf to on (disabled by
default) and configure DCF config in the configuration file during FusionSphere
OpenStack OM installation and deployment.

Obtain the XML file template from script/gspylib/etc/conf/centralized/
cluster_config_template_HA.xml.

Each line of information is commented out. The content in bold is related to the
DCF. The following is an example:

<?xml version="1.0" encoding="UTF-8"?>
<ROOT>
 <!-- Overall information -->
 <CLUSTER>
 <!-- Database name -->
 <PARAM name="clusterName" value="Sample1" />
 <!-- Database node name (hostname) -->
 <PARAM name="nodeNames" value="node1,node2,node3" />
 <!-- Node IP addresses corresponding to the node names, respectively -->
 <PARAM name="backIp1s" value="192.168.0.11,192.168.0.12,192.168.0.13"/>
 <!-- Database installation directory -->
 <PARAM name="gaussdbAppPath" value="/opt/huawei/newsql/app" />
 <!-- Log directory -->
 <PARAM name="gaussdbLogPath" value="/opt/huawei/logs/gaussdb" />
 <!-- Temporary file directory -->
 <PARAM name="tmpMppdbPath" value="/opt/huawei/logs/temp" />
 <!-- Database tool directory -->
 <PARAM name="gaussdbToolPath" value="/opt/huawei/tools" />
 <!-- Cluster or database type. A non-distributed cluster is used as an example here, that is, a centralized
cluster.-->
 <PARAM name="clusterType" value="single-inst"/>
 <!-- Whether to enable the DCF mode. on: enable; off: disable -->
 <PARAM name="enable_dcf" value="on/off"/>
 <!-- DCF configuration information -->
 <PARAM name="dcf_config" value="[{"stream_id":1,"node_id":
1,"ip":"192.168.0.11","port":
17783,"role":"LEADER"},{"stream_id":1,"node_id":
2,"ip":"192.168.0.12","port":
17783,"role":"FOLLOWER"},{"stream_id":1,"node_id":
3,"ip":"192.168.0.13","port":
17783,"role":"FOLLOWER"}]"/>
 </CLUSTER>
...

1. Cluster status query upon installation completion
Use gs_ctl to query the cluster status.
gs_ctl query –D <data_dir>
gs_ctl query -D /nvme0/gaussdb/cluster/nvme0/dn1
HA state:
 local role : Primary
 static connections : 2
 db state : Normal
 detail information : Normal
Paxos replication info:
 paxos write location : 964/87134528
 paxos commit location : 964/87134528
 local write location : 964/87134528
 local flush location : 964/87134528
 local replay location : 964/87134528
 dcf replication info : {"stream_id":1,"local_node_id":1,"role":"LEADER","term":3,"run_mode":

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 212

0,"work_mode":0,"hb_interval":1000,"elc_timeout":3000,"applied_index":14300633605."commit_index":
14300633605,"first_index":14300625186,"last_index":
14300633605,"cluster_min_apply_idx'14300633605,"leader_id":
1,"leader_ip":"172.16.137.38","leader_port":17783,"nodes":[{"node_id":1,"id":"172.16.137.38","port":
17783,"role":"LEADER","next_index":14300633606,"match_index":14300633605,"apply_index":
14300633605},{"node_id":2,"ip":"172.16.137.40","port":17783,"role":"FOLLOWER","next_index":
14300633606,"match_index":14300633605,"apply_index":14300633605},{"node_id":
3,"ip":"172.16.137.42","port":17783,"role":"FOLLOWER","next_index":14300633606,"match_index":
14300633605,"apply_index":14300633605}}}

Where:
– dcf_replication_info: DCF information of the current node.
– role: role of the current node. The value can be LEADER, FOLLOWER,

LOGGER, PASSIVE, PRE_CANDICATE, CANDIDATE or UNKNOW. The
preceding code shows that the current node is a leader node.

– term: election term.
– run_mode: DCF running mode. The value 0 indicates the automatic

election mode, and the value 2 indicates that automatic election is
disabled.

– work_mode: DCF working mode. The value 0 indicates the majority
mode, and the value 1 indicates the minority mode.

– hb_interval: heartbeat interval between DCF nodes, in milliseconds.
– elc_timeout: DCF election timeout period, in milliseconds.
– applied_index: log location that is applied to the state machine.
– commit_index: log location that has been saved by most DCF nodes.

Logs before commit_index have been made persistent.
– first_index: location of the first log saved by DCF nodes. This location is

moved backward when the DN invokes dcf_truncate. The previous logs
will be cleared.

– last_index: location of the last log saved by DCF nodes. This location
contains the logs that are stored in the memory of the DCF nodes but are
not persisted. Therefore, the value of last_index is greater than and equal
to that of commit_index.

– cluster_min_apply_idx: location of the log that has been applied and
assumes the smallest index.

– leader_id: ID of the leader node.
– leader_ip: IP address of the leader node.
– leader_port: port of the leader node, for DCF internal use.
– nodes: information about other nodes in the cluster.

2. Online cluster scale adjustment
To add a copy online, run the following command:
 # gs_ctl member --operation=add --nodeid=<node_id> --ip=<ip> --port=<port> -D <data_dir>

To reduce the number of copies online, run the following command:
 # gs_ctl member --operation=remove --nodeid=<node_id> -D <data_dir>

If the cluster is normal, a single copy can be deleted within 5 minutes.
3. Forcible minority startup

In case that the majority is faulty, no consensus can be reached based on the
Paxos protocol. As a result, the system cannot continue to provide services. In
order to provide emergency service capabilities, the minority needs to be
started to continue to provide services.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 213

Run the following command to start up the minority:
 # cm_ctl setrunmode -n <node_id> -D <data_dir> --xmode=minority --votenum=<num>

In the three-copy cluster scenario, if two copies are faulty, data can be
submitted as long as one copy is consistent.
Run the following command to resume the majority.
 # cm_ctl setrunmode -n <node_id> -D <data_dir> --xmode=normal --votenum=<num>

4. Switchover
Primary/standby switchover is supported when one primary and multiple
standby database nodes are deployed to implement switchover between AZs.
Switchover is performed for maintenance. Before a switchover, ensure that the
database instances are running properly, and no catchup between the primary
and standby nodes is ongoing after services are stopped.
To promote a standby node to primary, run the following command:
 # cm_ctl switchover –n <node_id> -D <data_dir>

5. Standby node rebuilding
Full build is supported in primary/standby deployment. After receiving a full
build request, the primary DN blocks recycling DCF logs and the standby DN
replicates Xlogs and data files from the primary DN. After the standby DN is
started, a time point is set for the DCF function to replicate logs.
To start full build, run the following command:
gs_ctl build -b full -D <new_node_data_dir>

8.9 SMP
The Symmetric Multi-Processing (SMP) technology of openGauss uses the multi-
core CPU architecture of a computer to implement multi-thread parallel
computing, fully using CPU resources to improve query performance. In complex
query scenarios, a single query takes long time and the system concurrency is low.
Therefore, the SMP technology is used to implement operator-level parallel
execution, which effectively reduces the query time and improves the query
performance and resource utilization. The overall implementation of the SMP
technology is as follows: For query operators that can be executed in parallel, data
is sliced, multiple worker threads are started for computation, and then the results
are summarized and returned to the frontend. The data interaction operator
Stream is added to the SMP architecture to implement data exchange between
multiple worker threads, ensuring the correctness and integrity of the query.

Applicable Scenarios and Restrictions

The SMP feature improves the performance through operator parallelism and
occupies more system resources, including CPU, memory, and I/O. Actually, SMP is
a method consuming resources to save time. It improves system performance in
applicable scenarios where resources are sufficient, but may deteriorate
performance otherwise. SMP applies to analytical query scenarios where a single
query takes a long time and the service concurrency is low. The SMP technology
can reduce the query delay and improve the system throughput. However, in a
transaction-related high-concurrency scenario, as the delay of each single query is
short, using the SMP technology increases the query delay and reduces the system
throughput.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 214

● Applicable scenarios
– Operators that support parallelism. The plan contains the following

operators that support parallelism.

▪ Scan: scans row-store ordinary tables, row-store partitioned tables,
column-store ordinary tables, and column-store partitioned tables
sequentially.

▪ Join: HashJoin and NestLoop

▪ Agg: HashAgg, SortAgg, PlainAgg, and WindowAgg (which supports
only partition by, and does not support order by)

▪ Stream: Local Redistribute and Local Broadcast

▪ Others: Result, Subqueryscan, Unique, Material, Setop, Append, and
VectoRow

– SMP-specific operators: To execute queries in parallel, Stream operators
are added for data exchange of the SMP feature. These new operators
can be considered as the subtypes of Stream operators.

▪ Local Gather aggregates data of parallel threads within an instance.

▪ Local Redistribute redistributes data based on the distribution key
across threads within an instance.

▪ Local Broadcast broadcasts data to each thread within an instance.

▪ Local RoundRobin distributes data in polling mode across threads
within an instance.

– The following uses the TPCH Q1 parallel plan as an example.

In this plan, the Scan and HashAgg operators are processed in parallel,
and the Local Gather operator is added for data exchange. Operator 3 is
a Local Gather operator. "dop: 1/4" indicates that the degree of
parallelism of the sender thread is 4 and the degree of parallelism of the
receiver thread is 1. That is, the lower-layer HashAggregate operator 4 is
executed based on the degree of parallelism 4, the upper-layer operators
1 and 2 are executed in serial mode, and operator 3 aggregates data of
parallel threads within the instance.
You can view the parallelism situation of each operator in the dop
information.

● Non-applicable scenarios
– Index scanning cannot be executed in parallel.
– MergeJoin cannot be executed in parallel.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 215

– WindowAgg order by cannot be executed in parallel.
– The cursor cannot be executed in parallel.
– Queries in stored procedures and functions cannot be executed in

parallel.
– Subplans and initplans cannot be queried in parallel, and operators that

contain subqueries cannot be executed in parallel, either.
– Query statements that contain the median operation cannot be executed

in parallel.
– Queries with global temporary tables cannot be executed in parallel.
– Updating materialized views cannot be executed in parallel.

Resource Restrictions on SMP Performance

The SMP architecture consumes abundant resources to save time. After plans are
executed in parallel, the resource consumption increases, covering the CPU,
memory, and I/O resources. As the degree of parallelism grows, the resource
consumption increases. If these resources become a bottleneck, the SMP
architecture does not improve performance but may deteriorate the overall
performance of the database instance. The following describes the various
resource restrictions on the SMP performance:

● CPU
In a general customer scenario where the system CPU usage is not high, using
the SMP architecture will fully use the CPU resources to improve the system
performance. If the number of CPU cores of the database server is small and
the CPU usage is already high, enabling the SMP feature may deteriorate the
system performance due to resource contention between multiple threads.

● Memory
Parallel query causes high memory usage, but the memory usage of each
operator is still subject to work_mem and other parameters. Assuming that
work_mem is 4 GB and the degree of parallelism is 2, the memory usage of
each thread in parallel is limited to 2 GB. When work_mem is small or the
system memory is not sufficient, using SMP may flush data to disks. As a
result, the query performance deteriorates.

● I/O
A parallel scan increases I/O resource consumption. It can improve scan
performance only when I/O resources are sufficient.

Other Factors Affecting the SMP Performance

Besides resources, there are other factors that impact the SMP performance, such
as uneven data distribution in a partitioned table and degree of parallelism.

● Data skew
Severe data skew deteriorates SMP performance. For example, if the data
volume of a value in the join column is much more than that of other values,
the data volume of a parallel thread will be much more than that of others
after Hash-based data redistribution, resulting in the long-tail issue and poor
SMP performance.

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 216

● Degree of parallelism
The SMP feature uses more resources, and remaining resources are
insufficient in a high concurrency scenario. Therefore, enabling the SMP
feature will result in severe resource contention among queries. Once resource
contention occurs, no matter the CPU, I/O, or memory resources, all of them
will result in entire performance deterioration. In the high concurrency
scenario, enabling the SMP feature will not improve the performance and
even may cause performance deterioration.

Procedure

Step 1 Observe the current system load situation. If resources are sufficient (the resource
usage is smaller than 50%), perform step 2. Otherwise, exit this system.

Step 2 Set query_dop to 1 (default value). Use explain to generate an execution plan
and check whether the plan can be used in scenarios in Applicable Scenarios and
Restrictions. If yes, go to step 3.

Step 3 Set query_dop to value. The degree of parallelism is 1 or value regardless of the
resource usage and plan characteristics.

Step 4 Before the query statement is executed, set query_dop to an appropriate value.
After the statement is executed, set query_dop to disable the query. The following
provides an example:
openGauss=# SET query_dop = 4;
openGauss=# SELECT COUNT(*) FROM t1 GROUP BY a;
......
openGauss=# SET query_dop = 1;

NO TE

● If resources are sufficient, the higher the degree of parallelism, the better the
performance.

● The degree of parallelism supports session-level settings. You are advised to enable the
SMP feature before executing a query that meets the requirements. After the execution
is complete, disable the SMP feature. Otherwise, SMP may affect services in peak hours.

----End

openGauss
Tutoria 8 Advanced Features

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 217

9 Connecting to a Database

9.1 C and C++

9.2 Java

9.3 Python

9.1 C and C++

9.1.1 ODBC
Open Database Connectivity (ODBC) is a Microsoft API for accessing databases
based on the X/OPEN CLI. Applications interact with the database through the
APIs provided by ODBC, which enhances their portability, scalability, and
maintainability.

Figure 9-1 shows the system structure of ODBC.

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 218

Figure 9-1 ODBC system structure

openGauss supports ODBC in the following environments.

Table 9-1 OSs Supported by ODBC

OS Platform

CentOS 6.4/6.5/6.6/6.7/6.8/6.9/7.0/7.1/7.2/7.3/7.4 x86_64

CentOS 7.6 ARM64

EulerOS 2.0 SP2/SP3 x86_64

EulerOS 2.0 SP8 ARM64

ODBC Packages for the Linux OS

Obtain the openGauss-*.*.0-ODBC.tar.gz package from the release package. In
the Linux OS, unixODBC header files (including sql.h and sqlext.h) and a library
file (libodbc.so) are required in application development. The header files and
library file can be obtained from the unixODBC-2.3.0 installation package.

Configuring the Data Source

The ODBC driver (psqlodbcw.so) provided by openGauss can be used after it is
configured in a data source. To configure a data source, you must configure the
odbc.ini and odbcinst.ini files on the server. The two files are generated during

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 219

the unixODBC compilation and installation, and are saved in the /usr/local/etc
directory by default.

Step 1 Obtain the unixODBC-2.3.9 source code package.

Download address: http://www.unixodbc.org/download.html

Step 2 Install unixODBC. If the unixODBC of another version has been installed on the
host, overwrite the existing unixODBC.

Currently, unixODBC-2.2.1 is not supported. For example, to install
unixODBC-2.3.0, run the commands below. unixODBC is installed in the /usr/local
directory by default. The data source file is generated in the /usr/local/etc
directory, and the library file is generated in the /usr/local/lib directory.

tar zxvf unixODBC-2.3.9.tar.gz
cd unixODBC-2.3.9
Modify the configure file. (If it does not exist, modify the configure.ac file.) Find LIB_VERSION.
Change the value of LIB_VERSION to 1:0:0 to compile a *.so.1 dynamic library with the same dependency
on psqlodbcw.so.
vim configure

./configure --enable-gui=no # To perform compilation on a Kunpeng server, add the configure parameter --
build=aarch64-unknown-linux-gnu.
make
The installation may require root permissions.
make install

Step 3 Replace the openGauss client driver.

1. Decompress openGauss-1.1.0-ODBC.tar.gz to the /usr/local/lib directory.
The psqlodbcw.la and psqlodbcw.so files are obtained.

2. Copy the library in the lib directory obtained after decompressing
openGauss-1.1.0-ODBC.tar.gz to the /usr/local/lib directory.

Step 4 Configure a data source.

1. Configure the ODBC driver file.
Add the following content to the /xxx/odbc/etc/odbcinst.ini file:
[GaussMPP]
Driver64=/xxx/odbc/lib/psqlodbcw.so
setup=/xxx/odbc/lib/psqlodbcw.so

For descriptions of the parameters in the odbcinst.ini file, see Table 9-2.

Table 9-2 odbcinst.ini configuration parameters

Parameter Description Example

[DriverName] Driver name, corresponding
to Driver in DSN.

[DRIVER_N]

Driver64 Path of the dynamic driver
library.

Driver64=/xxx/odbc/lib/
psqlodbcw.so

setup Driver installation path,
which is the same as the
dynamic library path in
Driver64.

setup=/xxx/odbc/lib/
psqlodbcw.so

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 220

2. Configure the data source file.

Add the following content to the /usr/local/etc/odbc.ini file:
[MPPODBC]
Driver=GaussMPP
Servername=10.145.130.26 (IP address of the server where the database resides)
Database=postgres (Database name)
Username=omm (Database username)
Password= (User password of the database)
Port=8000 (Listening port of the database)
Sslmode=allow

For descriptions of the parameters in the odbc.ini file, see Table 9-3.

Table 9-3 odbc.ini configuration parameters

Parameter Description Example

[DSN] Data source name. [MPPODBC]

Driver Driver name,
corresponding to
DriverName in
odbcinst.ini.

Driver=DRIVER_N

Servername Server IP address. Servername=10.145.130.2
6

Database Name of the database
to connect to.

Database=postgres

Username Database username. Username=omm

Password Database user
password.

Password=
NOTE

After a user establishes a
connection, the ODBC
driver automatically clears
their password stored in
memory.
However, if this parameter
is configured, UnixODBC
will cache data source files,
which may cause the
password to be stored in
the memory for a long
time.
When you connect to an
application, you are advised
to send your password
through an API instead of
writing it in a data source
configuration file. After the
connection is established,
immediately clear the
memory segment where
your password is stored.

Port Port number of the
server.

Port=8000

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 221

Parameter Description Example

Sslmode Whether to enable SSL. Sslmode=allow

Debug If this parameter is set
to 1, the mylog file of
the PostgreSQL ODBC
driver will be printed.
The directory generated
for storing logs is /
tmp/. If this parameter
is set to 0, no directory
is generated.

Debug=1

UseServerSidePrepare Whether to enable the
extended query
protocol for the
database.
The value can be 0 or
1. The default value is
1, indicating that the
extended query
protocol is enabled.

UseServerSidePrepare=1

UseBatchProtocol Whether to enable the
batch query protocol. If
it is enabled, DML
performance can be
improved. The value
can be 0 or 1. The
default value is 1.
If this parameter is set
to 0, the batch query
protocol is disabled
(mainly for
communication with
earlier database
versions).
If this parameter is set
to 1 and
support_batch_bind is
set to on, the batch
query protocol is
enabled.

UseBatchProtocol=1

ForExtensionConnec-
tor

This parameter
specifies whether the
savepoint is sent.

ForExtensionConnector=1

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 222

Parameter Description Example

UnamedPrepStmtThr
eshold

Each time
SQLFreeHandle is
invoked to release
statements, ODBC
sends a Deallocate
plan_name statement
to the server. A large
number of such
statements exist in the
service. To reduce the
number of the
statements to be sent,
stmt->plan_name is
left empty so that the
database can identify
them as unnamed
statements. This
parameter is added to
control the threshold
for unnamed
statements.

UnamedPrepStmtThres-
hold=100

ConnectionExtraInfo Whether to display the
driver deployment path
and process owner in
the connection_info
GUC parameter.

ConnectionExtraInfo=1
NOTE

The default value is 0. If
this parameter is set to 1,
the ODBC driver reports the
driver deployment path and
process owner to the
database and displays the
information in the
connection_info parameter.
In this case, you can query
the information from
PG_STAT_ACTIVITY.

BoolAsChar If this parameter is set
to Yes, the Boolean
value is mapped to the
SQL_CHAR type. If this
parameter is not set,
the value is mapped to
the SQL_BIT type.

BoolsAsChar = Yes

RowVersioning When an attempt is
made to update a row
of data, setting this
parameter to Yes
allows the application
to detect whether the
data has been modified
by other users.

RowVersioning=Yes

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 223

Parameter Description Example

ShowSystemTables By default, the driver
regards the system
catalog as a common
SQL table.

ShowSystemTables=Yes

The valid values of Sslmode are as follows:

Table 9-4 Sslmode options

Sslmode Whether
SSL
Encryption
Is Enabled

Description

disable No SSL connection is not enabled.

allow Possible If the database server requires SSL connection,
SSL connection can be enabled. However,
authenticity of the database server will not be
verified.

prefer Possible If the database supports SSL connection, SSL
connection is recommended. However,
authenticity of the database server will not be
verified.

require Yes SSL connection is required and data is encrypted.
However, authenticity of the database server will
not be verified.

verify-ca Yes SSL connection is required and whether the
database has a trusted certificate will be verified.

verify-
full

Yes SSL connection is required. In addition to the
check scope specified by verify-ca, the system
checks whether the name of the host where the
database resides is the same as that on the
certificate. openGauss does not support this
mode.

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 224

NO TE

SSL mode:

Ensure that the permission on the client.key* series files is 600.

Go back to the root directory, create the .postgresql directory, and save root.crt,
client.crt, client.key, client.key.cipher, client.key.rand, client.req, server.crt,
server.key, server.key.cipher, server.key.rand, and server.req to the .postgresql
directory.

In the Unix OS, server.crt and server.key must deny the access from the external
system or any group. Run the following command to set this permission:
chmod 0600 server.key

Copy the certificate files whose names start with root.crt and server to the install/
data directory of the database (the directory is the same as that of the
postgresql.conf file).

Modify the postgresql.conf file.
ssl = on
ssl_cert_file = 'server.crt'
ssl_key_file = 'server.key'
ssl_ca_file = 'root.crt'

After modifying the parameters, restart the database.

Set the sslmode parameter to require or verify-ca in the odbc.ini file.

Step 5 Configure the database server.

1. Log in as the OS user omm to the primary database node.

2. Run the following command to add NIC IP addresses or host names which are
separated by commas (,). The NICs and hosts are used to provide external
services. In the following command, NodeName specifies the name of the
current node.
gs_guc reload -N NodeName -I all -c "listen_addresses='localhost,192.168.0.100,10.11.12.13'"

If direct routing of LVS is used, add the virtual IP address (10.11.12.13) of LVS
to the server listening list.

You can also set listen_addresses to * or 0.0.0.0 to listen on all NICs, but this
incurs security risks and is not recommended.

3. Run the following command to add an authentication rule to the
configuration file of the primary database node. In this example, the IP
address (10.11.12.13) of the client is the remote host IP address.
gs_guc reload -N all -I all -h "host all jack 10.11.12.13/32 sha256"

NO TE

– -N all indicates all hosts in openGauss.

– -I all indicates all instances of the host.

– -h specifies statements that need to be added in the pg_hba.conf file.

– all indicates that a client can connect to any database.

– jack indicates the user that accesses the database.

– 10.11.12.13/32 indicates hosts whose IP address is 10.11.12.13 can be connected.
Configure the parameter based on your network conditions. 32 indicates that there
are 32 bits whose value is 1 in the subnet mask. That is, the subnet mask is
255.255.255.255.

– sha256 indicates that the password of user jack is encrypted using the SHA-256
algorithm.

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 225

If the ODBC client and the primary database node to connect are deployed on
the same machine, you can use the local trust authentication mode. Run the
following command:
local all all trust

If the ODBC client and the primary database node to connect are deployed on
different machines, use the SHA-256 authentication mode. Run the following
command:
host all all xxx.xxx.xxx.xxx/32 sha256

4. Restart openGauss.
gs_om -t stop
gs_om -t start

Step 6 Configure the environment variables on the client.
vim ~/.bashrc

Add the following information to the configuration file:

export LD_LIBRARY_PATH=/usr/local/lib/:$LD_LIBRARY_PATH
export ODBCSYSINI=/usr/local/etc
export ODBCINI=/usr/local/etc/odbc.ini

Step 7 Run the following command to validate the addition:
source ~/.bashrc

----End

Verifying the Data Source Configuration
Run the ./isql -v MPPODBC command (MPPODBC is the data source name).

● If the following information is displayed, the configuration is correct and the
connection succeeds.
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+
SQL>

● If error information is displayed, the configuration is incorrect. Check the
configuration.

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 226

Development Process

Figure 9-2 ODBC-based application development process

Common APIs

Table 9-5 API description

Function API

Allocate a handle SQLAllocHandle is a generic function for
allocating handles. It can replace the following
functions:
● SQLAllocEnv: allocates an environment

handle.
● SQLAllocConnect: allocates a connection

handle.
● SQLAllocStmt: allocates a statement handle.

Set environment attributes SQLSetEnvAttr

Set connection attributes SQLSetConnectAttr

Set statement attributes SQLSetStmtAttr

Connect to a data source SQLConnect

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 227

Function API

Bind a buffer to a column in
the result set

SQLBindCol

Bind the parameter marker
of an SQL statement to a
buffer

SQLBindParameter

Return the error message of
the last operation

SQLGetDiagRec

Prepare an SQL statement
for execution

SQLPrepare

Run a prepared SQL
statement

SQLExecute

Run an SQL statement
directly

SQLExecDirect

Fetch the next row (or
rows) from the result set

SQLFetch

Return data in a column of
the result set

SQLGetData

Get the column information
from a result set

SQLColAttribute

Disconnect from a data
source

SQLDisconnect

Release a handle SQLFreeHandle is a generic function for releasing
a handle. It can replace the following functions:
● SQLFreeEnv: releases an environment handle.
● SQLFreeConnect: releases a connection

handle.
● SQLFreeStmt: releases a statement handle.

NO TE

If an execution request (not in a transaction block) received in the database contains
multiple statements, the request is packed into a transaction. If one of the statements fails,
the entire request will be rolled back.

Connecting to a Database
#include <stdlib.h>
#include <stdio.h>
#include <sqlext.h>
#ifdef WIN32
#include <windows.h>
#endif
SQLHENV V_OD_Env; // Handle ODBC environment
SQLHDBC V_OD_hdbc; // Handle connection

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 228

SQLINTEGER V_OD_erg;
int main(int argc,char *argv[])
{
 // 1. Allocate an environment handle.
 V_OD_erg = SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE,&V_OD_Env);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error AllocHandle\n");
 exit(0);
 }
 // 2. Set environment attributes (version information).
 SQLSetEnvAttr(V_OD_Env, SQL_ATTR_ODBC_VERSION, (void*)SQL_OV_ODBC3, 0);
 // 3. Allocate a connection handle.
 V_OD_erg = SQLAllocHandle(SQL_HANDLE_DBC, V_OD_Env, &V_OD_hdbc);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }
 // 4. Set connection attributes.
 SQLSetConnectAttr(V_OD_hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_ON, 0);
 // 5. Connect to a data source. userName and password indicate the username and password for
connecting to the database. Set them as needed.
 // If the username and password have been set in the odbc.ini file, you do not need to set userName or
password here, retaining "" for them. However, you are not advised to do so because the username and
password will be disclosed if the permission for odbc.ini is abused.
 V_OD_erg = SQLConnect(V_OD_hdbc, (SQLCHAR*) "gaussdb", SQL_NTS,
 (SQLCHAR*) "userName", SQL_NTS, (SQLCHAR*) "password", SQL_NTS);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error SQLConnect %d\n",V_OD_erg);
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }
 printf("Connected !\n");
 // 6. Disconnect data source connections and release handles.
 SQLDisconnect(V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_DBC,V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 return(0);
}

Creating a Table
#include <stdlib.h>
#include <stdio.h>
#include <sqlext.h>
#ifdef WIN32
#include <windows.h>
#endif
SQLHENV V_OD_Env; // Handle ODBC environment
SQLHSTMT V_OD_hstmt; // Handle statement
SQLHDBC V_OD_hdbc; // Handle connection
SQLINTEGER V_OD_erg;
int main(int argc,char *argv[])
{
 V_OD_erg = SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE,&V_OD_Env);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error AllocHandle\n");
 exit(0);
 }

 SQLSetEnvAttr(V_OD_Env, SQL_ATTR_ODBC_VERSION, (void*)SQL_OV_ODBC3, 0);

 V_OD_erg = SQLAllocHandle(SQL_HANDLE_DBC, V_OD_Env, &V_OD_hdbc);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 229

 exit(0);
 }

 SQLSetConnectAttr(V_OD_hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_ON, 0);

 V_OD_erg = SQLConnect(V_OD_hdbc, (SQLCHAR*) "gaussdb", SQL_NTS,
 (SQLCHAR*) "userName", SQL_NTS, (SQLCHAR*) "password", SQL_NTS);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error SQLConnect %d\n",V_OD_erg);
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }
 printf("Connected !\n");
 // 1. Set statement attributes.
 SQLSetStmtAttr(V_OD_hstmt,SQL_ATTR_QUERY_TIMEOUT,(SQLPOINTER *)3,0);
 // 2. Apply for statement handles.
 SQLAllocHandle(SQL_HANDLE_STMT, V_OD_hdbc, &V_OD_hstmt);
 // 3. Create a table.
 SQLExecDirect(V_OD_hstmt,"drop table IF EXISTS customer_t1",SQL_NTS);
 SQLExecDirect(V_OD_hstmt,"CREATE TABLE customer_t1(c_customer_sk INTEGER, c_customer_name
VARCHAR(32));",SQL_NTS);
 printf("Done !\n");
 // 4. Disconnect data source connections and release handles.
 SQLFreeHandle(SQL_HANDLE_STMT,V_OD_hstmt);
 SQLDisconnect(V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_DBC,V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 return(0);
 }

Insert Operation
#include <stdlib.h>
#include <stdio.h>
#include <sqlext.h>
#ifdef WIN32
#include <windows.h>
#endif
SQLHENV V_OD_Env; // Handle ODBC environment
SQLHSTMT V_OD_hstmt; // Handle statement
SQLHDBC V_OD_hdbc; // Handle connection
SQLINTEGER value = 100;
SQLINTEGER V_OD_erg;
int main(int argc,char *argv[])
{
 V_OD_erg = SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE,&V_OD_Env);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error AllocHandle\n");
 exit(0);
 }

 SQLSetEnvAttr(V_OD_Env, SQL_ATTR_ODBC_VERSION, (void*)SQL_OV_ODBC3, 0);

 V_OD_erg = SQLAllocHandle(SQL_HANDLE_DBC, V_OD_Env, &V_OD_hdbc);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }

 SQLSetConnectAttr(V_OD_hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_ON, 0);

 V_OD_erg = SQLConnect(V_OD_hdbc, (SQLCHAR*) "gaussdb", SQL_NTS,
 (SQLCHAR*) "userName", SQL_NTS, (SQLCHAR*) "password", SQL_NTS);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error SQLConnect %d\n",V_OD_erg);

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 230

 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }
 printf("Connected !\n");

 SQLSetStmtAttr(V_OD_hstmt,SQL_ATTR_QUERY_TIMEOUT,(SQLPOINTER *)3,0);

 SQLAllocHandle(SQL_HANDLE_STMT, V_OD_hdbc, &V_OD_hstmt);

 // 1. Insert directly.
 SQLExecDirect(V_OD_hstmt,"insert into customer_t1 values(25,li)",SQL_NTS);

 // 2. Insert the pbe method.
 // 2.1 Insert a placeholder.
 SQLPrepare(V_OD_hstmt,"insert into customer_t1 values(?)",SQL_NTS);
 // 2.2 Bind parameters.
 SQLBindParameter(V_OD_hstmt,1,SQL_PARAM_INPUT,SQL_C_SLONG,SQL_INTEGER,0,0,
 &value,0,NULL);
 // 2.3 Execute the prepared insert statement.
 SQLExecute(V_OD_hstmt);

 // 3. Disconnect data source connections and release handles.
 SQLFreeHandle(SQL_HANDLE_STMT,V_OD_hstmt);
 SQLDisconnect(V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_DBC,V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 return(0);
 }

SELECT Operation
#include <stdlib.h>
#include <stdio.h>
#include <sqlext.h>
#ifdef WIN32
#include <windows.h>
#endif
SQLHENV V_OD_Env; // Handle ODBC environment
SQLHSTMT V_OD_hstmt; // Handle statement
SQLHDBC V_OD_hdbc; // Handle connection
char typename[100];
SQLINTEGER V_OD_erg, V_OD_buffer, V_OD_err, V_OD_id;
int main(int argc,char *argv[])
{
 V_OD_erg = SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE,&V_OD_Env);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error AllocHandle\n");
 exit(0);
 }

 SQLSetEnvAttr(V_OD_Env, SQL_ATTR_ODBC_VERSION, (void*)SQL_OV_ODBC3, 0);

 V_OD_erg = SQLAllocHandle(SQL_HANDLE_DBC, V_OD_Env, &V_OD_hdbc);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }
 SQLSetConnectAttr(V_OD_hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_ON, 0);

 V_OD_erg = SQLConnect(V_OD_hdbc, (SQLCHAR*) "gaussdb", SQL_NTS,
 (SQLCHAR*) "userName", SQL_NTS, (SQLCHAR*) "password", SQL_NTS);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error SQLConnect %d\n",V_OD_erg);
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 231

 printf("Connected !\n");

 SQLSetStmtAttr(V_OD_hstmt,SQL_ATTR_QUERY_TIMEOUT,(SQLPOINTER *)3,0);

 SQLAllocHandle(SQL_HANDLE_STMT, V_OD_hdbc, &V_OD_hstmt);

 // 1. Run the select statement.
 SQLExecDirect(V_OD_hstmt,"select c_customer_sk from customer_t1",SQL_NTS);
 // 2. Obtain attributes of a specific column in the result set.
 SQLColAttribute(V_OD_hstmt,1,SQL_DESC_TYPE,typename,100,NULL,NULL);
 printf("SQLColAtrribute %s\n",typename);
 // 3. Bind the result set.
 SQLBindCol(V_OD_hstmt,1,SQL_C_SLONG, (SQLPOINTER)&V_OD_buffer,150,
 (SQLLEN *)&V_OD_err);
 // 4. Obtain data in the result set by executing SQLFetch.
 V_OD_erg=SQLFetch(V_OD_hstmt);
 // 5. Obtain and return data by executing SQLGetData.
 while(V_OD_erg != SQL_NO_DATA)
 {
 SQLGetData(V_OD_hstmt,1,SQL_C_SLONG,(SQLPOINTER)&V_OD_id,0,NULL);
 printf("SQLGetData ----ID = %d\n",V_OD_id);
 V_OD_erg=SQLFetch(V_OD_hstmt);
 };
 printf("Done !\n");
 // 6. Disconnect data source connections and release handles.
 SQLFreeHandle(SQL_HANDLE_STMT,V_OD_hstmt);
 SQLDisconnect(V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_DBC,V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 return(0);
 }

Update Operation
#include <stdlib.h>
#include <stdio.h>
#include <sqlext.h>
#ifdef WIN32
#include <windows.h>
#endif
SQLHENV V_OD_Env; // Handle ODBC environment
SQLHSTMT V_OD_hstmt; // Handle statement
SQLHDBC V_OD_hdbc; // Handle connection
SQLINTEGER V_OD_erg;
int main(int argc,char *argv[])
{
 V_OD_erg = SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE,&V_OD_Env);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error AllocHandle\n");
 exit(0);
 }

 SQLSetEnvAttr(V_OD_Env, SQL_ATTR_ODBC_VERSION, (void*)SQL_OV_ODBC3, 0);

 V_OD_erg = SQLAllocHandle(SQL_HANDLE_DBC, V_OD_Env, &V_OD_hdbc);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }

 SQLSetConnectAttr(V_OD_hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_ON, 0);

 V_OD_erg = SQLConnect(V_OD_hdbc, (SQLCHAR*) "gaussdb", SQL_NTS,
 (SQLCHAR*) "userName", SQL_NTS, (SQLCHAR*) "password", SQL_NTS);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error SQLConnect %d\n",V_OD_erg);

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 232

 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }
 printf("Connected !\n");

 SQLSetStmtAttr(V_OD_hstmt,SQL_ATTR_QUERY_TIMEOUT,(SQLPOINTER *)3,0);

 SQLAllocHandle(SQL_HANDLE_STMT, V_OD_hdbc, &V_OD_hstmt);

 // 1. Perform the update operation.
 SQLExecDirect(V_OD_hstmt,"update customer_t1 set c_customer_sk = 1000 where c_customer_name =
'li' ",SQL_NTS);
 // 16. Disconnect data source connections and release handles.
 SQLFreeHandle(SQL_HANDLE_STMT,V_OD_hstmt);
 SQLDisconnect(V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_DBC,V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 return(0);
 }

Delete Operation
#include <stdlib.h>
#include <stdio.h>
#include <sqlext.h>
#ifdef WIN32
#include <windows.h>
#endif
SQLHENV V_OD_Env; // Handle ODBC environment
SQLHSTMT V_OD_hstmt; // Handle statement
SQLHDBC V_OD_hdbc; // Handle connection
SQLINTEGER V_OD_erg;
int main(int argc,char *argv[])
{
 V_OD_erg = SQLAllocHandle(SQL_HANDLE_ENV,SQL_NULL_HANDLE,&V_OD_Env);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error AllocHandle\n");
 exit(0);
 }

 SQLSetEnvAttr(V_OD_Env, SQL_ATTR_ODBC_VERSION, (void*)SQL_OV_ODBC3, 0);

 V_OD_erg = SQLAllocHandle(SQL_HANDLE_DBC, V_OD_Env, &V_OD_hdbc);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }

 SQLSetConnectAttr(V_OD_hdbc, SQL_ATTR_AUTOCOMMIT, SQL_AUTOCOMMIT_ON, 0);

 V_OD_erg = SQLConnect(V_OD_hdbc, (SQLCHAR*) "gaussdb", SQL_NTS,
 (SQLCHAR*) "userName", SQL_NTS, (SQLCHAR*) "password", SQL_NTS);
 if ((V_OD_erg != SQL_SUCCESS) && (V_OD_erg != SQL_SUCCESS_WITH_INFO))
 {
 printf("Error SQLConnect %d\n",V_OD_erg);
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 exit(0);
 }
 printf("Connected !\n");

 SQLSetStmtAttr(V_OD_hstmt,SQL_ATTR_QUERY_TIMEOUT,(SQLPOINTER *)3,0);

 SQLAllocHandle(SQL_HANDLE_STMT, V_OD_hdbc, &V_OD_hstmt);

 // 1. Perform the delete operation.
 SQLExecDirect(V_OD_hstmt,"delete from customer_t1 where c_customer_name = 'li'",SQL_NTS);

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 233

 // 2. Disconnect data source connections and release handles.
 SQLFreeHandle(SQL_HANDLE_STMT,V_OD_hstmt);
 SQLDisconnect(V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_DBC,V_OD_hdbc);
 SQLFreeHandle(SQL_HANDLE_ENV, V_OD_Env);
 return(0);
 }

9.1.2 libpq
libpq is a C application programming interface to openGauss. libpq contains a set
of library functions that allow client programs to send query requests to the
openGauss servers and obtain query results. It is also the underlying engine of
other openGauss application interfaces, such as ODBC.

Header File that libpq Depends On
Client programs that use libpq must include the header file libpq-fe.h and must
link with the libpq library.

Development Process
To compile and connect to a libpq source program, perform the following
operations:

1. Decompress the release package (for example, openGauss-*.*.0-***-64bit-
Libpq.tar.gz). The required header file is stored in the include folder, and the
lib folder contains the required libpq library file.

NO TE

In addition to libpq-fe.h, the include folder contains the header files postgres_ext.h,
gs_thread.h, and gs_threadlocal.h by default. These three header files are the
dependency files of libpq-fe.h.

2. Include the libpq-fe.h header file.
#include <libpq-fe.h>

3. Provide the -I directory option to provide the installation location of the
header files. (Sometimes the compiler looks for the default directory, so this
option can be ignored.) Example:
gcc -I (Directory where the header files are located) -L (Directory where the libpq library is located)
testprog.c -lpq

4. If the makefile is used, add the following options to variables CPPFLAGS,
LDFLAGS, and LIBS:
CPPFLAGS += -I (Directory where the header files are located)
LDFLAGS += -L (Directory where the libpq library is located)
LIBS += -lpq

Connecting to a Database
#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 234

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;

 /*
 * This value is used when the user provides the value of the conninfo character string in the command
line.
 * Otherwise, the environment variables or the default values
 * are used for all other connection parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname=postgres port=42121 host='10.44.133.171' application_name=test
connect_timeout=5 sslmode=allow user='test' password='test_1234'";

 /* Connect to the database. */
 conn = PQconnectdb(conninfo);

 /* Check whether the backend connection has been successfully established. */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Close the database connection and clean up the database. */
 PQfinish(conn);

 return 0;
}

Creating a Table
#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 int nFields;
 int i,j;

 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname=postgres port=42121 host='10.44.133.171' application_name=test
connect_timeout=5 sslmode=allow user='test' password='test_1234'";

 conn = PQconnectdb(conninfo);

 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 235

 exit_nicely(conn);
 }

 res = PQexec(conn, "CREATE TABLE customer_t1(c_customer_sk INTEGER, c_customer_name
VARCHAR(32))");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "CREATE command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /* Close the database connection and clean up the database. */
 PQfinish(conn);

 return 0;
}

Insert Operation
#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;

 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname=postgres port=42121 host='10.44.133.171' application_name=test
connect_timeout=5 sslmode=allow user='test' password='test_1234'";

 conn = PQconnectdb(conninfo);

 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 res = PQexec(conn, "insert into customer_t1 values(25,'li')");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "INSERT command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /* Close the database connection and clean up the database. */
 PQfinish(conn);

 return 0;
}

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 236

SELECT Operation
#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>
#include <stdint.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}
static void
show_binary_results(PGresult *res)
{
 int i;
 int i_fnum,
 t_fnum;

 /* Use PQfnumber to avoid assumptions about field order in the result. */
 i_fnum = PQfnumber(res, "i");
 t_fnum = PQfnumber(res, "t");

 for (i = 0; i < PQntuples(res); i++)
 {
 char *iptr;
 char *tptr;
 int ival;

 /* Obtain the field value. (Ignore the possibility that they may be null). */
 iptr = PQgetvalue(res, i, i_fnum);
 tptr = PQgetvalue(res, i, t_fnum);

 /*
 * The binary representation of INT4 is the network byte order,
 * which is better to be replaced by the local byte order.
 */
 ival = ntohl(*((uint32_t *) iptr));

 /*
 * The binary representation of TEXT is text. Since libpq can append a zero byte to it,
 * and think of it as a C string.
 *
 */

 printf("tuple %d: got\n", i);
 printf(" i = (%d bytes) %d\n",
 PQgetlength(res, i, i_fnum), ival);
 printf(" t = (%d bytes) '%s'\n",
 PQgetlength(res, i, t_fnum), tptr);
 printf("\n\n");
 }
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 const char *paramValues[1];
 int paramLengths[1];
 int paramFormats[1];
 uint32_t binaryIntVal;

 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname=postgres port=42121 host='10.44.133.171' application_name=test

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 237

connect_timeout=5 sslmode=allow user='test' password='test_1234'";

 conn = PQconnectdb(conninfo);

 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

/* Convert the integer value "2" to the network byte order. */
 binaryIntVal = htonl((uint32_t) 25);

 /* Set the parameter array for PQexecParams. */
 paramValues[0] = (char *) &binaryIntVal;
 paramLengths[0] = sizeof(binaryIntVal);
 paramFormats[0] = 1; /* Binary */

 res = PQexecParams(conn,
 "SELECT * FROM customer_t1 WHERE c_customer_sk = $1::int4",
 1, /* One parameter */
 NULL, /* Enable the backend to deduce the parameter type. */
 paramValues,
 paramLengths,
 paramFormats,
 1); /* Binary results are required. */

 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 show_binary_results(res);

 PQclear(res);

 /* Close the database connection and clean up the database. */
 PQfinish(conn);

 return 0;
}

Update Operation
#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 int nFields;
 int i,j;

 if (argc > 1)
 conninfo = argv[1];

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 238

 else
 conninfo = "dbname=postgres port=42121 host='10.44.133.171' application_name=test
connect_timeout=5 sslmode=allow user='test' password='test_1234'";

 conn = PQconnectdb(conninfo);

 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 res = PQexec(conn, "update customer_t1 set c_customer_sk = 1000 where c_customer_name = 'li'");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "UPDATE command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /* Close the database connection and clean up the database. */
 PQfinish(conn);

 return 0;
}

Delete Operation
#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 int nFields;
 int i,j;

 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname=postgres port=42121 host='10.44.133.171' application_name=test
connect_timeout=5 sslmode=allow user='test' password='test_1234'";

 conn = PQconnectdb(conninfo);

 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 res = PQexec(conn, "delete from customer_t1 where c_customer_name = 'li");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "DELETE command failed: %s", PQerrorMessage(conn));
 PQclear(res);

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 239

 exit_nicely(conn);
 }

 /* Close the database connection and clean up the database. */
 PQfinish(conn);

 return 0;
}

9.2 Java
Java Database Connectivity (JDBC) is a Java API for running SQL statements. It
provides unified access APIs for different relational databases, based on which
applications process data. The openGauss library supports JDBC 4.0 and requires
JDK 1.8 for code compiling. It does not support JDBC-ODBC bridge.

Run build.sh in the source code directory on Linux OS to obtain the driver JAR
package postgresql.jar, which is stored in the source code directory. Obtain the
package from the release package named openGauss-x.x.x-OS version
number-64bit-Jdbc.tar.gz.

The driver package is compatible with PostgreSQL. The class name and structure
in the driver are the same as those in the PostgreSQL driver. All applications
running on PostgreSQL can be smoothly migrated to the current system.

Loading the Driver
Before creating a database connection, you need to load the database driver class.
The package location varies according to the driver class. The driver of openGauss
JDBC is com.huawei.opengauss.jdbc.Driver. The URL prefix is jdbc:opengauss.

Connecting to a Database
Before connecting to the database, add the host IP address (bold and underlined)
of the database to the pg_hba.conf file in the datanode folder of the installation
directory. The format is as follows:

host all all 127.0.0.1/32 sha256

JDBC provides the following three database connection methods:

Statements can be executed in two modes: Statement and PreparedStatement.

● Statement:
– execute: The return value is of the Boolean type. No return value is

displayed after the query statement is executed.
– executeQuery: The return value is of the ResultSet type and is usually

used for query. To use this function, write an SQL statement in it.
● PreparedStatement:

There are two Statement methods, which are used in different ways. You need
to write statements in conn.prepareStatement() and then run execute or
executeQuery as required. The input parameters in the two methods are
empty. If an SQL statement contains variables, you are advised to use
PreparedStatement to prevent SQL injection. Use ? to replace the variable and
use the setObject method to assign a value to the variable.

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 240

Example:

NO TE

In the following example, the underlined fields in bold need to be replaced with your own
information, where:
● 127.0.0.1: IP address of the host where the database is located.
● 8080: port for connecting to the database.
● test: name of the connected database. If the database does not exist, an error is

reported. Before using the database, check whether the database exists.
● myuser: username for connecting to the database.
● myPassWord: password for connecting to the database.

● DriverManager.getConnection(String url);
In this connection method, the username and password must be added to the
URL.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;

public class JdbcConn {
 public static void main(String[] args) {
 getConnect();
 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://127.0.0.1:8080/test?
user=myuser&password=myPassWord";
 Properties info = new Properties();
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();
 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL);
 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }
 }
}

● DriverManager.getConnection(String url, Properties info);
The parameters such as the username and password of this method are
added to the instance of the Properties object by using setProperty.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;

public class JdbcConn {
 public static void main(String[] args) {
 getConnect();

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 241

 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://127.0.0.1:8080/test";
 Properties info = new Properties();
 info.setProperty("user","myuser");
 info.setProperty("password","myPassWord");
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();
 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL, info);
 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }
 }
}

● DriverManager.getConnection(String url, String user, String password);
This method requires the username and password to be entered as variables.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;

public class JdbcConn {
 public static void main(String[] args) {
 getConnect();
 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://127.0.0.1:8080/test";
 String username="myuser";
 String passwd="myPassWord";
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();
 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL, username, passwd);
 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }
 }
}

Creating a Table
● Create a table using Statement.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 242

import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;

public class JdbcConn {
 public static void main(String[] args) throws SQLException {
 Connection conn = getConnect();
 Statement statement = conn.createStatement();
 statement.execute("create table test_table (id int,name varchar (10))");
 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://127.0.0.1:8080/test?
user=myuser&password=myPassWord";
 Properties info = new Properties();
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();
 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL);
 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }
 }
}

● Create a table using PreparedStatement.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;

public class JdbcConn {
public static void main(String[] args) throws SQLException {
 Connection conn = getConnect();
 PreparedStatement preparedStatement=conn.prepareStatement("create table test (id int,name
varchar (10))");
 preparedStatement.execute();
 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://127.0.0.1:8080/test?
user=myuser&password=myPassWord";
 Properties info = new Properties();
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();
 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL);
 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 243

 }
}

Insert Operation
NO TE

Before inserting data, ensure that the test table has been created (as performed in
Creating a Table). The table structure is as follows:
create table test (id int,name varchar (10));

● Use Statement to insert data. You can run a query statement to check
whether the insertion takes effect.
public static void main(String[] args) throws SQLException {
 Connection conn = getConnect();
 Statement statement = conn.createStatement();
 statement.execute("insert into test (id,name) values (2,'zhangsan')");
 PreparedStatement preparedStatement=conn.prepareStatement("select * from test;");
 ResultSet resultSet=preparedStatement.executeQuery();
 while (resultSet.next()){
 System.out.println(resultSet.getObject("id")+" "+
 resultSet.getObject("name"));
 }
 conn.close();
 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://127.0.0.1:8080/test?
user=myuser&password=myPassWord";
 Properties info = new Properties();
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();
 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL);
 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }
 }

● Use PreparedStatement to insert data. You can run a query statement to
check whether the insertion takes effect.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;

public class JdbcConn {
 public static void main(String[] args) throws SQLException {
 Connection conn = getConnect();
 Statement statement = conn.createStatement();
 PreparedStatement preparedStatement=conn.prepareStatement("insert into test (id,name)
values (3,'zhaoliu')");
 preparedStatement.execute();
 preparedStatement=conn.prepareStatement("select * from test;");
 ResultSet resultSet=preparedStatement.executeQuery();
 while (resultSet.next()){
 System.out.println(resultSet.getObject("id")+" "+

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 244

 resultSet.getObject("name"));
 }
 conn.close();
 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://127.0.0.1:8080/test?
user=myuser&password=myPassWord";
 Properties info = new Properties();
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();
 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL);
 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }
 }
}

SELECT Operation
NO TE

Ensure that you have performed the creation and insertion operations in Creating a Table
and Insert Operation.

● You can use prepareStatement to perform pre-compiled query operations by
dynamically adding parameters, or execute common SQL statements.
public static void main(String[] args) throws SQLException {
 Connection conn = getConnect();
 PreparedStatement preparedStatement=conn.prepareStatement("select * from test where id=?;");
 preparedStatement.setObject(1,1);
 ResultSet resultSet=preparedStatement.executeQuery();
 while (resultSet.next()){
 System.out.println(resultSet.getObject("id")+" "+
 resultSet.getObject("name"));
 }
 conn.close();
 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://127.0.0.1:8080/test?
user=myuser&password=myPassWord";
 Properties info = new Properties();
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();
 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL);
 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }
 }

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 245

● Use Statement to execute a query statement.
 public static void main(String[] args) throws SQLException {
 Connection conn = getConnect();
 Statement statement = conn.createStatement();
 ResultSet resultSet=statement.executeQuery("select * from test");
 while (resultSet.next()){
 System.out.println(resultSet.getObject("id")+" "+
 resultSet.getObject("name"));
 }
 conn.close();
 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://127.0.0.1:8080/test?
user=myuser&password=myPassWord";
 Properties info = new Properties();
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();
 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL);
 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }
 }

Update Operation
NO TE

Ensure that you have performed the creation and insertion operations in Creating a Table
and Insert Operation.

● Use Statement to perform the update operation, and then run the query
statement to check whether the update is successful.
public static void main(String[] args) throws SQLException {
 Connection conn = getConnect();
 Statement statement = conn.createStatement();
 statement.execute("update test set name='wangwu' where id=1");
 PreparedStatement preparedStatement=conn.prepareStatement("select * from test");
 ResultSet resultSet=preparedStatement.executeQuery();
 while (resultSet.next()){
 System.out.println(resultSet.getObject("id")+" "+
 resultSet.getObject("name"));
 }
 conn.close();
 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://127.0.0.1:8080/test?
user=myuser&password=myPassWord";
 Properties info = new Properties();
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();
 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL);

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 246

 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }
 }

● Use PreparedStatement to perform the update operation, and then run the
query statement to check whether the update is successful:
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;

public class JdbcConn {
 public static void main(String[] args) throws SQLException {
 Connection conn = getConnect();
 Statement statement = conn.createStatement();
 PreparedStatement preparedStatement=conn.prepareStatement("update test set
name='wangwu' where id=1");
 preparedStatement.execute();
 preparedStatement=conn.prepareStatement("select * from test;");
 ResultSet resultSet=preparedStatement.executeQuery();
 while (resultSet.next()){
 System.out.println(resultSet.getObject("id")+" "+
 resultSet.getObject("name"));
 }
 conn.close();
 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://127.0.0.1:8080/test?
user=myuser&password=myPassWord";
 Properties info = new Properties();
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();
 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL);
 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }
 }
}

Delete Operation
● Use Statement to perform the delete opeation and run the query statement

to check whether the deletion is successful.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 247

public class JdbcConn {
 public static void main(String[] args) throws SQLException {
 Connection conn = getConnect();
 Statement statement = conn.createStatement();
 statement.execute("delete from test where id =4");
 PreparedStatement preparedStatement=conn.prepareStatement("select * from test;");
 ResultSet resultSet=preparedStatement.executeQuery();
 while (resultSet.next()){
 System.out.println(resultSet.getObject("id")+" "+
 resultSet.getObject("name"));
 }
 conn.close();
 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://10.244.50.251:33700/test_l?
user=ltest&password=tiange1999?";
 Properties info = new Properties();
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();
 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL);
 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }
 }
}

● Use preparedStatement to perform the delete opeation and run the query
statement to check whether the deletion is successful.
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Properties;

public class JdbcConn {
 public static void main(String[] args) throws SQLException {
 Connection conn = getConnect();
 Statement statement = conn.createStatement();
 PreparedStatement preparedStatement=conn.prepareStatement("delete from test where id =2");
 preparedStatement.execute();
 preparedStatement=conn.prepareStatement("select * from test;");
 ResultSet resultSet=preparedStatement.executeQuery();
 while (resultSet.next()){
 System.out.println(resultSet.getObject("id")+" "+
 resultSet.getObject("name"));
 }
 conn.close();
 }
 public static Connection getConnect() {
 String driver = "com.huawei.opengauss.jdbc.Driver";
 String sourceURL = "jdbc:opengauss://10.244.50.251:33700/test_l?
user=ltest&password=tiange1999?";
 Properties info = new Properties();
 Connection conn = null;
 try {
 Class.forName(driver);
 } catch (Exception var9) {
 var9.printStackTrace();

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 248

 return null;
 }
 try {
 conn = DriverManager.getConnection(sourceURL);
 System.out.println("Connection successful!");
 return conn;
 } catch (Exception var8) {
 var8.printStackTrace();
 return null;
 }
 }
}

9.3 Python

Psycopg is a Python API used to execute SQL statements and provides a unified
access API for PostgreSQL and GaussDB. Applications can perform data operations
based on psycopg. Psycopg2 encapsulates libpq. Some code is implemented using
the C language, which is efficient and secure. It provides client-side and server-side
cursors, asynchronous communication and notification, and the COPY TO and
COPY FROM functions. Psycopg2 supports multiple types of Python out-of-the-box
and adapts to PostgreSQL data types. Through the flexible object adaptation
system, you can extend and customize APIs. Psycopg2 is compatible with Unicode
and Python 3.

openGauss supports the psycopg2 feature and allows psycopg2 to be connected in
SSL mode.

Table 9-6 Platforms supported by Psycopg

OS Platform

EulerOS 2.5 x86_64

EulerOS 2.8 ARM64

Loading a Driver
● Before using the driver, perform the following operations:

a. Download the compiled psycopg2 package from the openGauss website.

NO TE

The psycopg2 downloaded from the openGauss website matches Python 3.6. If
you use Python of another version, you need to compile psycopg2. The
compilation method is similar to that in the PostgreSQL database. You only need
to modify the code for verifying the version number of setup.py during
compilation by running the following command:
sed -i "s/(pgmajor, pgminor, pgpatch)/(9, 2, 4)/g" setup.py

b. Decompress the driver package of the corresponding version and copy
psycopg2 to the third-party package folder (that is, the site-packages
directory) in the Python installation directory.

c. Ensure that the permission on the psycopg2 directory is at least 755.
Otherwise, the file cannot be accessed due to permission issues.

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 249

https://opengauss.org/zh/download.html

d. For a non-database user, set LD_LIBRARY_PATH to the lib directory
generated after decompression.

● Load a database driver before creating a database connection:
import psycopg2

Connecting to a Database
The following Python code shows how to connect to an existing database. If the
database does not exist, it will be automatically created and a database object will
be returned.

#!/usr/bin/python
import psycopg2
conn = psycopg2.connect(database="testdb", user="openGauss", password="xxxxxxxx", host="127.0.0.1",
port="26000")

In the preceding code, replace the content in bold based on the actual
requirements. Specify testdb as the database name.

Creating a Table
The following Python program will be used to create a table in the previously
created database testdb:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="testdb", user="openGauss", password="xxxxxxxx", host="127.0.0.1",
port="26000")

cur = conn.cursor()
cur.execute('''CREATE TABLE COMPANY
 (ID INT PRIMARY KEY NOT NULL,
 NAME TEXT NOT NULL,
 AGE INT NOT NULL,
 ADDRESS CHAR(50),
 SALARY REAL);''')

conn.commit()
conn.close()

When the preceding program is executed, the COMPANY table is created in the
testdb database.

Insert Operation
The following Python program shows how to create a record in the COMPANY
table created in the preceding example:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="testdb", user="openGauss", password="xxxxxxxx", host="127.0.0.1",
port="26000")

cur = conn.cursor()

cur.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \
 VALUES (1, 'Paul', 32, 'California', 20000.00)");

cur.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 250

 VALUES (2, 'Allen', 25, 'Texas', 15000.00)");

cur.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \
 VALUES (3, 'Teddy', 23, 'Norway', 20000.00)");

cur.execute("INSERT INTO COMPANY (ID,NAME,AGE,ADDRESS,SALARY) \
 VALUES (4, 'Mark', 25, 'Rich-Mond ', 65000.00)");

conn.commit()
conn.close()

When the above program is executed, it will create/insert the given record in the
COMPANY table.

SELECT Operation

The following Python program shows how to obtain and display records from the
COMPANY table created in the preceding example:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="testdb", user="openGauss", password="xxxxxxxx", host="127.0.0.1",
port="26000")

cur = conn.cursor()

cur.execute("SELECT id, name, address, salary from COMPANY")
rows = cur.fetchall()
for row in rows:
 print("ID = ", row[0])
 print("NAME = ", row[1])
 print("ADDRESS = ", row[2])
 print("SALARY = ", row[3])

conn.close()

When the preceding program is executed, the following information is displayed:

ID =, 1
NAME =, Paul
ADDRESS =, California
SALARY =, 20000.0

ID =, 2
NAME =, Allen
ADDRESS =, Texas
SALARY =, 15000.0

ID =, 3
NAME =, Teddy
ADDRESS =, Norway
SALARY =, 20000.0

ID =, 4
NAME =, Mark
ADDRESS =, Rich-Mond
SALARY =, 65000.0

Update Operation

The following Python code shows how to use the UPDATE statement to update
any record, and then obtain and display the updated record from the COMPANY
table:

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 251

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="testdb", user="openGauss", password="xxxxxxxx", host="127.0.0.1",
port="26000")

cur = conn.cursor()

cur.execute("UPDATE COMPANY set SALARY = 25000.00 where ID=1")
conn.commit

cur.execute("SELECT id, name, address, salary from COMPANY")
rows = cur.fetchall()
for row in rows:
 print("ID = ", row[0])
 print("NAME = ", row[1])
 print("ADDRESS = ", row[2])
 print("SALARY = ", row[3])

conn.close()

When the preceding program is executed, the following results are generated:

ID =, 1
NAME =, Paul
ADDRESS =, California
SALARY =, 25000.0

ID =, 2
NAME =, Allen
ADDRESS =, Texas
SALARY =, 15000.0

ID =, 3
NAME =, Teddy
ADDRESS =, Norway
SALARY =, 20000.0

ID =, 4
NAME =, Mark
ADDRESS =, Rich-Mond
SALARY =, 65000.0

Delete Operation
The following Python code shows how to use the DELETE statement to delete
records, and then obtain and display the remaining records from the COMPANY
table:

#!/usr/bin/python

import psycopg2

conn = psycopg2.connect(database="testdb", user="openGauss", password="xxxxxxxx", host="127.0.0.1",
port="26000")

cur = conn.cursor()

cur.execute("DELETE from COMPANY where ID=2;")
conn.commit

cur.execute("SELECT id, name, address, salary from COMPANY")
rows = cur.fetchall()
for row in rows:
 print("ID = ", row[0])
 print("NAME = ", row[1])
 print("ADDRESS = ", row[2])

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 252

 print("SALARY = ", row[3])

conn.close()

When the preceding program is executed, the following results are generated:

ID =, 1
NAME =, Paul
ADDRESS =, California
SALARY =, 20000.0

ID =, 3
NAME =, Teddy
ADDRESS =, Norway
SALARY =, 20000.0

ID =, 4
NAME =, Mark
ADDRESS =, Rich-Mond
SALARY =, 65000.0

openGauss
Tutoria 9 Connecting to a Database

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 253

10 Obtaining openGauss Resources

openGauss provides online resources that contain a lot of useful information, such
as common syntaxes, descriptions, and examples. If you encounter any problem
when using the database, you are advised to search for solutions on our website.
In addition, you can communicate with openGauss users about your problems
through the open source community or emails.

Our Website
Our openGauss website provides information about openGauss download,
documents, open source community, certification, knowledge graph, security, and
activities.

● Download: You can download the openGauss software package, connection
tools, and support tools. The panorama of openGauss support tools is
provided.

● Docs: describe the openGauss database, including the legal statement, release
notes, product description, technical white paper, compilation guide, quick
start, installation guide, administrator guide, developer guide, and tool
reference. These documents also describe the architecture, functions, features,
and usage of openGauss. A large number of examples are provided in the
documents for your reference.

● Community: shows how to contribute to the open source community, as well
as the community organization structure, and online communication
methods.

● Connect: helps users tune in news, activities, videos, summits, and blogs
related to openGauss.

● Certification: introduces the openGauss certification system and serves an
entry for querying training information and certificates.

● Security: introduces the vulnerability management process of openGauss and
releases security notices and CVEs.

● Code: Gitee and Github community entries.
● Knowledge: provides a knowledge graph of openGauss cluster management,

database tools, database kernel, and database driver.

openGauss
Tutoria 10 Obtaining openGauss Resources

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 254

https://opengauss.org/zh/

openGauss Community

openGauss has opened the database source code and an openGauss community
has been established. openGauss encourages users to contribute to and cooperate
with the community, hoping to jointly build an enterprise-level open-source
database community that can integrate diversified technical architectures.

The openGauss community is organized based on different Special Interest Groups
(SIGs) to better manage and improve the work process. SIGs are open to everyone
to make contributions. Each SIG has one or more code repositories on the Gitee
platform. You can commit issues, participate in issue discussions, pull requests, and
review code in the code repository of an SIG. Table 10-1 lists common SIGs. You
can find the SIGs that you are interested in from the SIG list. For details about
how to contribute to the community, see Contribution.

Table 10-1 Common SIGs in the openGauss community

SIG Scope of Responsibilities

SQLEngine Develops and maintains the SQL
engine of the openGauss community.

StorageEngine Develops and maintains the storage
engine of the openGauss community.

Connectors Develops and maintains connectors of
the openGauss community.

Tools Develops and maintains openGauss
community tools.

Docs Develops and maintains openGauss
community documents.

Infra Develops and maintains the
infrastructure of the openGauss
community.

Security Develops and maintains the security of
the openGauss community.

OM Develops and maintains openGauss
installation and deployment.

IoT Develops and maintains openGauss
IoT.

In-place Update Develops and maintains the in-place
update engine of the openGauss
community.

AI Develops and maintains AI in the
openGauss community.

GIS Develops and maintains the
geographic information system of the
openGauss community.

openGauss
Tutoria 10 Obtaining openGauss Resources

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 255

https://gitee.com/opengauss
https://opengauss.org/zh/contribution.html
https://gitee.com/opengauss/tc/tree/master/sigs/SQLEngine
https://gitee.com/opengauss/tc/tree/master/sigs/StorageEngine
https://gitee.com/opengauss/tc/tree/master/sigs/Connectors
https://gitee.com/opengauss/tc/tree/master/sigs/Tools
https://gitee.com/opengauss/tc/tree/master/sigs/Docs
https://gitee.com/opengauss/tc/tree/master/sigs/Infra
https://gitee.com/opengauss/tc/tree/master/sigs/Security
https://gitee.com/opengauss/tc/tree/master/sigs/OM
https://gitee.com/opengauss/tc/tree/master/sigs/IoT
https://gitee.com/opengauss/tc/tree/master/sigs/In-place-Update
https://gitee.com/opengauss/tc/tree/master/sigs/AI
https://gitee.com/opengauss/tc/tree/master/sigs/GIS

SIG Scope of Responsibilities

CloudNative Develops and maintains the cloud
native direction of the openGauss
community.

SecurityTechnology Develops and maintains database
security technologies of the openGauss
community.

DistributionCertification Defines and develops the certification
process and test suites for the
openGauss release.

Plugin Plans, manages, and develops the
openGauss plug-in mechanism.

Blockchain Discusses the blockchain service
scenarios and studies the core
blockchain technical issues.

DCF Develops and maintains the DCF of
the openGauss community.

QA Develops and maintains the version
quality of the openGauss community.

Graph Manages knowledge graph data for
unified storage and query in the
openGauss community.

Blog
openGauss provides a blog section, where users can exchange their problems and
experience during the use of openGauss. If you encounter any problem, you can
also search for other users' solutions. Or, post blogs to share your experience with
other users, helping them solve problems.

Mailing List
The openGauss community uses the mailing list for online communication. We
sincerely invite you to participate indiscussions through the mailing list. For details,
see Communication.

Learning Platform
● openGauss community

– WeChat official account

openGauss
Tutoria 10 Obtaining openGauss Resources

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 256

https://gitee.com/opengauss/tc/tree/master/sigs/CloudNative
https://gitee.com/opengauss/tc/tree/master/sigs/SecurityTechnology
https://gitee.com/opengauss/tc/tree/master/sigs/DistributionCertification
https://gitee.com/opengauss/tc/tree/master/sigs/Plugin
https://gitee.com/opengauss/tc/tree/master/sigs/Blockchain
https://gitee.com/opengauss/tc/tree/master/sigs/DCF
https://gitee.com/opengauss/tc/tree/master/sigs/QA
https://gitee.com/opengauss/tc/tree/master/sigs/SecurityTechnology
https://opengauss.org/zh/blogs/blogs.html
https://opengauss.org/zh/community/onlineCommunication.html

– bilibili
– CSDN

● Gauss Squirrel Club
– WeChat official account

– bilibili
– CSDN
– MoDB

openGauss
Tutoria 10 Obtaining openGauss Resources

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 257

https://blog.csdn.net/weixin_49727236
https://blog.csdn.net/GaussDB

11 Appendix: SQL Syntax

ABORT
Exits the current transaction.

ABORT [WORK | TRANSACTION] ;

ALTER AUDIT POLICY
Modifies the unified audit policy.

ALTER AUDIT POLICY [IF EXISTS] policy_name { ADD | REMOVE } { [privilege_audit_clause]
[access_audit_clause] };
ALTER AUDIT POLICY [IF EXISTS] policy_name MODIFY (filter_group_clause);
ALTER AUDIT POLICY [IF EXISTS] policy_name DROP FILTER;
ALTER AUDIT POLICY [IF EXISTS] policy_name COMMENTS policy_comments;
ALTER AUDIT POLICY [IF EXISTS] policy_name { ENABLE | DISABLE };

where privilege_audit_clause can be:
PRIVILEGES { DDL | ALL }

where access_audit_clause can be:
ACCESS { DML | ALL }

where filter_group_clause can be:
FILTER ON { (FILTER_TYPE (filter_value [, ...])) [, ...] }

where DDL can be:
{ (ALTER | ANALYZE | COMMENT | CREATE | DROP | GRANT | REVOKE | SET | SHOW | LOGIN_ACCESS |
LOGIN_FAILURE | LOGOUT | LOGIN) }

where DML can be:
{ (COPY | DEALLOCATE | DELETE_P | EXECUTE | REINDEX | INSERT | REPARE | SELECT | TRUNCATE |
UPDATE) }

ALTER DATA SOURCE
Modifies the attributes and content of the data source.

ALTER DATA SOURCE src_name
 [TYPE 'type_str']
 [VERSION {'version_str' | NULL}]
 [OPTIONS ({ [ADD | SET | DROP] optname ['optvalue'] } [, ...])];
ALTER DATA SOURCE src_name RENAME TO src_new_name;
ALTER DATA SOURCE src_name OWNER TO new_owner;

Valid optname are:
 DSN, USERNAME, PASSWORD, ENCODING

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 258

ALTER DATABASE
Modifies a database, including its name, owner, connection limitation, and object
isolation.
ALTER DATABASE database_name
 [[WITH] CONNECTION LIMIT connlimit];
ALTER DATABASE database_name
 RENAME TO new_name;
ALTER DATABASE database_name
 OWNER TO new_owner;
ALTER DATABASE database_name
 SET TABLESPACE new_tablespace;
ALTER DATABASE database_name
 SET configuration_parameter { { TO | = } { value | DEFAULT } | FROM CURRENT };
ALTER DATABASE database_name
 RESET { configuration_parameter | ALL };
ALTER DATABASE database_name
 [WITH] { ENABLE | DISABLE } PRIVATE OBJECT;

ALTER DEFAULT PRIVILEGES
Sets the permissions that will be applied to objects created in the future. (It does
not affect permissions granted to existing objects.)
ALTER DEFAULT PRIVILEGES
 [FOR { ROLE | USER } target_role [, ...]]
 [IN SCHEMA schema_name [, ...]]
 abbreviated_grant_or_revoke;

where abbreviated_grant_or_revoke can be:
grant_on_tables_clause
 | grant_on_sequences_clause
 | grant_on_functions_clause
 | grant_on_types_clause
 | grant_on_client_master_keys_clause
 | grant_on_column_encryption_keys_clause
 | revoke_on_tables_clause
 | revoke_on_sequences_clause
 | revoke_on_functions_clause
 | revoke_on_types_clause
 | revoke_on_client_master_keys_clause
 | revoke_on_column_encryption_keys_clause
where grant_on_tables_clause can be:
GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES |
 ALTER | DROP | COMMENT | INDEX | VACUUM } [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION]
where grant_on_sequences_clause can be:
GRANT { { SELECT | UPDATE | USAGE | ALTER | DROP | COMMENT }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION]
where grant_on_functions_clause can be:
GRANT { { EXECUTE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON FUNCTIONS
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION]
where grant_on_types_clause can be:
GRANT { { USAGE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON TYPES
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION]
where grant_on_client_master_keys_clause can be:
GRANT { { USAGE | DROP } [, ...] | ALL [PRIVILEGES] }
 ON CLIENT_MASTER_KEYS

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 259

 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION]
where grant_on_column_encryption_keys_clause can be:
GRANT { { USAGE | DROP } [, ...] | ALL [PRIVILEGES] }
 ON COLUMN_ENCRYPTION_KEYS
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION]
where revoke_on_tables_clause can be:
REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES |
 ALTER | DROP | COMMENT | INDEX | VACUUM } [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT | CASCADE CONSTRAINTS]
where revoke_on_sequences_clause can be:
REVOKE [GRANT OPTION FOR]
 { { SELECT | UPDATE | USAGE | ALTER | DROP | COMMENT }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT | CASCADE CONSTRAINTS]
where revoke_on_functions_clause can be:
REVOKE [GRANT OPTION FOR]
 { { EXECUTE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON FUNCTIONS
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT | CASCADE CONSTRAINTS]
where revoke_on_types_clause can be:
REVOKE [GRANT OPTION FOR]
 { { USAGE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON TYPES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT | CASCADE CONSTRAINTS]
where revoke_on_client_master_keys_clause can be:
REVOKE [GRANT OPTION FOR]
 { { USAGE | DROP } [, ...] | ALL [PRIVILEGES] }
 ON CLIENT_MASTER_KEYS
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT | CASCADE CONSTRAINTS]
where revoke_on_column_encryption_keys_clause can be:
REVOKE [GRANT OPTION FOR]
 { { USAGE | DROP } [, ...] | ALL [PRIVILEGES] }
 ON COLUMN_ENCRYPTION_KEYS
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT | CASCADE CONSTRAINTS]

ALTER DIRECTORY
Modifies a directory.

CREATE [OR REPLACE] DIRECTORY directory_name
AS 'path_name';

ALTER EXTENSION
Modifies an extension.

ALTER EXTENSION name UPDATE [TO new_version];
ALTER EXTENSION name SET SCHEMA new_schema;
ALTER EXTENSION name ADD member_object;
ALTER EXTENSION name DROP member_object;

where member_object is:

 FOREIGN TABLE object_name |
 FUNCTION function_name ([[argmode] [argname] argtype [, ...]]) |
 [PROCEDURAL] LANGUAGE object_name |
 SCHEMA object_name |

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 260

 SERVER object_name |
 TABLE object_name |
 TEXT SEARCH CONFIGURATION object_name |
 TYPE object_name |
 VIEW object_name

ALTER FOREIGN TABLE
Modifies a foreign table.

1. GDS:
ALTER FOREIGN TABLE [IF EXISTS] table_name
 OPTIONS ({[ADD | SET | DROP] option ['value']} [, ...]);
ALTER FOREIGN TABLE [IF EXISTS] tablename
 OWNER TO new_owner;

2. HDFS:
ALTER FOREIGN TABLE [IF EXISTS] table_name
 OPTIONS ({[ADD | SET | DROP] option ['value']} [, ...]);
ALTER FOREIGN TABLE [IF EXISTS] tablename
 OWNER TO new_owner;
ALTER FOREIGN TABLE [IF EXISTS] table_name
 MODIFY ({ column_name data_type | column_name [CONSTRAINT constraint_name] NOT NULL
[ENABLE] | column_name [CONSTRAINT constraint_name] NULL } [, ...]);
ALTER FOREIGN TABLE [IF EXISTS] tablename
 ADD [CONSTRAINT constraint_name]
 {PRIMARY KEY | UNIQUE} (column_name)
 [NOT ENFORCED [ENABLE QUERY OPTIMIZATION | DISABLE QUERY OPTIMIZATION] | ENFORCED];
ALTER FOREIGN TABLE [IF EXISTS] tablename
 DROP CONSTRAINT constraint_name ;
ALTER FOREIGN TABLE [IF EXISTS] tablename
 action [, ...];

where action can be:
ALTER [COLUMN] column_name [SET DATA] TYPE data_type
| ALTER [COLUMN] column_name { SET | DROP } NOT NULL
| ALTER [COLUMN] column_name SET STATISTICS integer
| ALTER [COLUMN] column_name OPTIONS ({[ADD | SET | DROP] option ['value'] } [, ...])
| MODIFY column_name data_type
| MODIFY column_name [CONSTRAINT constraint_name] NOT NULL [ENABLE]
| MODIFY column_name [CONSTRAINT constraint_name] NULL

3. OBS:
ALTER FOREIGN TABLE [IF EXISTS] table_name
 OPTIONS ({[ADD | SET | DROP] option ['value']} [, ...]);
ALTER FOREIGN TABLE [IF EXISTS] tablename
 OWNER TO new_owner;
ALTER FOREIGN TABLE [IF EXISTS] table_name
 MODIFY ({ column_name data_type | column_name [CONSTRAINT constraint_name] NOT NULL
[ENABLE] | column_name [CONSTRAINT constraint_name] NULL } [, ...]);
ALTER FOREIGN TABLE [IF EXISTS] tablename
 ADD [CONSTRAINT constraint_name]
 {PRIMARY KEY | UNIQUE} (column_name)
 [NOT ENFORCED [ENABLE QUERY OPTIMIZATION | DISABLE QUERY OPTIMIZATION] | ENFORCED];
ALTER FOREIGN TABLE [IF EXISTS] tablename
 DROP CONSTRAINT constraint_name ;
ALTER FOREIGN TABLE [IF EXISTS] tablename
 action [, ...];

where action can be:
ALTER [COLUMN] column_name [SET DATA] TYPE data_type
| ALTER [COLUMN] column_name { SET | DROP } NOT NULL
| ALTER [COLUMN] column_name SET STATISTICS integer
| ALTER [COLUMN] column_name OPTIONS ({[ADD | SET | DROP] option ['value'] } [, ...])
| MODIFY column_name data_type
| MODIFY column_name [CONSTRAINT constraint_name] NOT NULL [ENABLE]
| MODIFY column_name [CONSTRAINT constraint_name] NULL

4. GC:

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 261

ALTER FOREIGN TABLE [IF EXISTS] tablename
 OPTIONS ({[SET] option ['value']} [, ...]);
ALTER FOREIGN TABLE [IF EXISTS] tablename
 OWNER TO new_owner;
ALTER FOREIGN TABLE [IF EXISTS] table_name
 MODIFY ({ column_name data_type [, ...]);
ALTER FOREIGN TABLE [IF EXISTS] tablename
 action [, ...];

where action can be:
ALTER [COLUMN] column_name [SET DATA] TYPE data_type
| MODIFY column_name data_type

ALTER FUNCTION

Modifies the attributes of a user-defined function.

ALTER FUNCTION function_name ([{[argmode] [argname] argtype} [, ...]])
 action [...] [RESTRICT];
ALTER FUNCTION funname ([{[argmode] [argname] argtype} [, ...]])
 RENAME TO new_name;
ALTER FUNCTION funname ([{[argmode] [argname] argtype} [, ...]])
 OWNER TO new_owner;
ALTER FUNCTION funname ([{[argmode] [argname] argtype} [, ...]])
 SET SCHEMA new_schema;

where action can be:
{CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT}
| {IMMUTABLE | STABLE | VOLATILE}
| {NOT FENCED | FENCED}
| [NOT] LEAKPROOF
| {[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER}
| AUTHID { DEFINER | CURRENT_USER }
| COST execution_cost
| ROWS result_rows
| SET configuration_parameter {{ TO | = } { value | DEFAULT }| FROM CURRENT}
| RESET {configuration_parameter| ALL}

ALTER GROUP

Modifies the attributes of a user group.

ALTER GROUP group_name
 ADD USER user_name [, ...];
ALTER GROUP group_name
 DROP USER user_name [, ...];
ALTER GROUP group_name
 RENAME TO new_name;

ALTER INDEX

Modifies the definition of an existing index.

ALTER INDEX [IF EXISTS] index_name
 RENAME TO new_name;
ALTER INDEX [IF EXISTS] index_name
 SET TABLESPACE tablespace_name;
ALTER INDEX [IF EXISTS] index_name
 SET ({storage_parameter = value} [, ...]);
ALTER INDEX [IF EXISTS] index_name
 RESET (storage_parameter [, ...]) ;
ALTER INDEX [IF EXISTS] index_name
 [MODIFY PARTITION partition_name] UNUSABLE;
ALTER INDEX index_name
 REBUILD [PARTITION partition_name];
ALTER INDEX [IF EXISTS] index_name

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 262

 RENAME PARTITION partition_name TO new_partition_name;
ALTER INDEX [IF EXISTS] index_name
 MOVE PARTITION index_partition_name TABLESPACE new_tablespace;

ALTER LARGE OBJECT
Modifies the definition of a large object. It is used to assign a new owner.

ALTER LARGE OBJECT large_object_oid
 OWNER TO new_owner;

ALTER MASKING POLICY
Modifies a masking policy.

ALTER MASKING POLICY policy_name { ADD | REMOVE | MODIFY } masking_actions [, ...];
ALTER MASKING POLICY policy_name MODIFY (filter_group_clause);
ALTER MASKING POLICY policy_name DROP FILTER;
ALTER MASKING POLICY policy_name { ENABLE | DISABLE };

where masking_actions can be:
masking_function ON LABEL(label_name [, ...])

where masking_function can be:
{ maskall | randommasking | creditcardmasking | basicemailmasking | fullemailmasking | shufflemasking |
alldigitsmasking | regexpmasking }

where filter_group_clause can be:
FILTER ON { (FILTER_TYPE (filter_value [, ...])) [, ...] }

ALTER MATERIALIZED VIEW
Modifies multiple auxiliary attributes of an existing materialized view.

ALTER MATERIALIZED VIEW [IF EXISTS] mv_name
 OWNER TO new_owner;
ALTER MATERIALIZED VIEW [IF EXISTS] mv_name
 RENAME [COLUMN] column_name to new_column_name;
ALTER MATERIALIZED VIEW [IF EXISTS] mv_name
 RENAME TO new_name;

ALTER OPERATOR
Modifies the definition of an operator.

ALTER OPERATOR name ({ left_type | NONE } , { right_type | NONE }) OWNER TO new_owner
ALTER OPERATOR name ({ left_type | NONE } , { right_type | NONE }) SET SCHEMA new_schema

ALTER RESOURCE LABEL
Modifies a resource label.

ALTER RESOURCE LABEL label_name { ADD | REMOVE } label_item_list [, ...];

where label_item_list can be:
resource_type(resource_path[, ...])

where resource_type can be:
{ TABLE | COLUMN | SCHEMA | VIEW | FUNCTION }

ALTER RESOURCE POOL
Modifies the Cgroup of a resource pool.

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 263

ALTER RESOURCE POOL pool_name
 WITH ({MEM_PERCENT=pct | CONTROL_GROUP="group_name" | ACTIVE_STATEMENTS=stmt |
MAX_DOP = dop | MEMORY_LIMIT='memory_size' | io_limits=io_limits | io_priority='priority' |
nodegroup='nodegroup_name' }[, ...]);

ALTER ROLE
Modifies role attributes.

ALTER ROLE role_name [[WITH] option [...]];
ALTER ROLE role_name
 RENAME TO new_name;
ALTER ROLE role_name [IN DATABASE database_name]
 SET configuration_parameter {{ TO | = } { value | DEFAULT }|FROM CURRENT};
ALTER ROLE role_name
 [IN DATABASE database_name] RESET {configuration_parameter|ALL};

where option can be:
{CREATEDB | NOCREATEDB}
 | {CREATEROLE | NOCREATEROLE}
 | {INHERIT | NOINHERIT}
 | {AUDITADMIN | NOAUDITADMIN}
 | {SYSADMIN | NOSYSADMIN}
 | {MONADMIN | NOMONADMIN}
 | {OPRADMIN | NOOPRADMIN}
 | {POLADMIN | NOPOLADMIN}
 | {USEFT | NOUSEFT}
 | {LOGIN | NOLOGIN}
 | {REPLICATION | NOREPLICATION}
 | {INDEPENDENT | NOINDEPENDENT}
 | {VCADMIN | NOVCADMIN}
 | {PERSISTENCE | NOPERSISTENCE}
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD { 'password' [EXPIRED] | DISABLE | EXPIRED }
 | [ENCRYPTED | UNENCRYPTED] IDENTIFIED BY { 'password' [REPLACE 'old_password' | EXPIRED] |
DISABLE }
 | VALID BEGIN 'timestamp'
 | VALID UNTIL 'timestamp'
 | RESOURCE POOL 'respool'
 | USER GROUP 'groupuser'
 | PERM SPACE 'spacelimit'
 | TEMP SPACE 'tmpspacelimit'
 | SPILL SPACE 'spillspacelimit'
 | NODE GROUP logic_cluster_name
 | ACCOUNT { LOCK | UNLOCK }
 | PGUSER

ALTER ROW LEVEL SECURITY POLICY
Modifies an existing row-level access control policy, including the policy name and
the users and expressions affected by the policy.

ALTER [ROW LEVEL SECURITY] POLICY [IF EXISTS] policy_name ON table_name RENAME TO
new_policy_name

ALTER [ROW LEVEL SECURITY] POLICY policy_name ON table_name
 [TO { role_name | PUBLIC } [, ...]]
 [USING (using_expression)]

ALTER SCHEMA
Modifies schema attributes.

ALTER SCHEMA schema_name
 RENAME TO new_name;
ALTER SCHEMA schema_name

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 264

 OWNER TO new_owner;
ALTER SCHEMA schema_name {WITH | WITHOUT} BLOCKCHAIN;

ALTER SEQUENCE
Modifies the parameters of an existing sequence.

ALTER SEQUENCE [IF EXISTS] name
 [MAXVALUE maxvalue | NO MAXVALUE | NOMAXVALUE]
 [OWNED BY { table_name.column_name | NONE }];
ALTER SEQUENCE [IF EXISTS] name OWNER TO new_owner;

ALTER SERVER
Adds, modifies, or deletes the parameters of an existing server. You can query
existing servers from the pg_foreign_server system catalog.

ALTER SERVER server_name [VERSION 'new_version']
 [OPTIONS ({[ADD | SET | DROP] option ['value']} [, ...])];
ALTER SERVER server_name
 OWNER TO new_owner;
ALTER SERVER server_name
 RENAME TO new_name;

ALTER SESSION
Defines or modifies the conditions or parameters that affect the current session.
Modified session parameters are kept until the current session is disconnected.

ALTER SESSION SET
 {{config_parameter { { TO | = } { value | DEFAULT }
 | FROM CURRENT }} | CURRENT_SCHEMA [TO | =] { schema | DEFAULT }
 | TIME ZONE time_zone
 | SCHEMA schema
 | NAMES encoding_name
 | ROLE role_name PASSWORD 'password'
 | SESSION AUTHORIZATION { role_name PASSWORD 'password' | DEFAULT }
 | XML OPTION { DOCUMENT | CONTENT }
 } ;
ALTER SESSION SET [SESSION CHARACTERISTICS AS] TRANSACTION
 { ISOLATION LEVEL { READ COMMITTED | READ UNCOMMITTED } | { READ ONLY | READ
WRITE } } [, ...] ;

ALTER SYNONYM
Modifies the attributes of the SYNONYM object.

ALTER SYNONYM synonym_name
 OWNER TO new_owner;

ALTER SYSTEM KILL SESSION
Ends a session.

ALTER SYSTEM KILL SESSION 'session_sid, serial' [IMMEDIATE];

ALTER SYSTEM SET
Sets GUC parameters at the POSTMASTER, SIGHUP, and BACKEND levels. This
command writes parameters into the configuration file. The time to take effect
varies according to the level.

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 265

ALTER SYSTEM SET { GUC_name } TO { GUC_value };

ALTER TABLE
Modifies tables, including modifying table definitions, renaming tables, renaming
specified columns in tables, renaming table constraints, setting table schemas,
enabling or disabling row-level security policies, and adding or updating multiple
columns.

ALTER TABLE [IF EXISTS] { table_name [*] | ONLY table_name | ONLY (table_name)}
 action [, ...];
ALTER TABLE [IF EXISTS] table_name
 ADD ({ column_name data_type [compress_mode] [COLLATE collation] [column_constraint [...]]}
[, ...]);
ALTER TABLE [IF EXISTS] table_name
 MODIFY ({ column_name data_type | column_name [CONSTRAINT constraint_name] NOT NULL
[ENABLE] | column_name [CONSTRAINT constraint_name] NULL } [, ...]);
ALTER TABLE [IF EXISTS] table_name
 RENAME TO new_table_name;
ALTER TABLE [IF EXISTS] { table_name [*] | ONLY table_name | ONLY (table_name)}
 RENAME [COLUMN] column_name TO new_column_name;
ALTER TABLE [IF EXISTS] { table_name [*] | ONLY table_name | ONLY (table_name)}
 RENAME CONSTRAINT constraint_name TO new_constraint_name;
ALTER TABLE [IF EXISTS] table_name
 SET SCHEMA new_schema;

where action can be:
column_clause
 | ADD table_constraint [NOT VALID]
 | ADD table_constraint_using_index
 | VALIDATE CONSTRAINT constraint_name
 | DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
 | CLUSTER ON index_name
 | SET WITHOUT CLUSTER
 | SET ({storage_parameter = value} [, ...])
 | RESET (storage_parameter [, ...])
 | OWNER TO new_owner
 | SET TABLESPACE new_tablespace
 | SET {COMPRESS|NOCOMPRESS}
 | TO { GROUP groupname | NODE (nodename [, ...]) }
 | ADD NODE (nodename [, ...])
 | DELETE NODE (nodename [, ...])
 | UPDATE SLICE LIKE table_name
 | DISABLE TRIGGER [trigger_name | ALL | USER]
 | ENABLE TRIGGER [trigger_name | ALL | USER]
 | ENABLE REPLICA TRIGGER trigger_name
 | ENABLE ALWAYS TRIGGER trigger_name
 | ENABLE ROW LEVEL SECURITY
 | DISABLE ROW LEVEL SECURITY
 | FORCE ROW LEVEL SECURITY
 | NO FORCE ROW LEVEL SECURITY
 | ENCRYPTION KEY ROTATION
where column_clause can be:
ADD [COLUMN] column_name data_type [compress_mode] [COLLATE collation] [column_constraint
[...]]
 | MODIFY column_name data_type
 | MODIFY column_name [CONSTRAINT constraint_name] NOT NULL [ENABLE]
 | MODIFY column_name [CONSTRAINT constraint_name] NULL
 | DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 | ALTER [COLUMN] column_name [SET DATA] TYPE data_type [COLLATE collation] [USING
expression]
 | ALTER [COLUMN] column_name { SET DEFAULT expression | DROP DEFAULT }
 | ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 | ALTER [COLUMN] column_name SET STATISTICS [PERCENT] integer
 | ADD STATISTICS ((column_1_name, column_2_name [, ...]))
 | DELETE STATISTICS ((column_1_name, column_2_name [, ...]))
 | ALTER [COLUMN] column_name SET ({attribute_option = value} [, ...])
 | ALTER [COLUMN] column_name RESET (attribute_option [, ...])

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 266

 | ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
where column_constraint can be:
[CONSTRAINT constraint_name]
 { NOT NULL |
 NULL |
 CHECK (expression) |
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) STORED |
 UNIQUE index_parameters |
 PRIMARY KEY index_parameters |
 ENCRYPTED WITH (COLUMN_ENCRYPTION_KEY = column_encryption_key, ENCRYPTION_TYPE =
encryption_type_value) |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE action] [ON UPDATE action] }
 [DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE]
where compress_mode can be:
{ DELTA | PREFIX | DICTIONARY | NUMSTR | NOCOMPRESS }
where table_constraint can be:
[CONSTRAINT constraint_name]
 { CHECK (expression) |
 UNIQUE (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 PARTIAL CLUSTER KEY (column_name [, ...]) |
 FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE action] [ON UPDATE action] }
 [DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE]
where index_parameters can be:
[WITH ({storage_parameter = value} [, ...])]
 [USING INDEX TABLESPACE tablespace_name]
where table_constraint_using_index can be:
[CONSTRAINT constraint_name]
 { UNIQUE | PRIMARY KEY } USING INDEX index_name
 [DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE]

ALTER TABLE PARTITION
ALTER TABLE [IF EXISTS] { table_name [*] | ONLY table_name | ONLY (table_name)}
 action [, ...];
ALTER TABLE [IF EXISTS] { table_name [*] | ONLY table_name | ONLY (table_name)}
 RENAME PARTITION { partion_name | FOR (partition_value [, ...]) } TO partition_new_name;

where action can be:
move_clause |
 exchange_clause |
 row_clause |
 merge_clause |
 modify_clause |
 split_clause |
 add_clause |
 drop_clause
where move_clause can be:
MOVE PARTITION { partion_name | FOR (partition_value [, ...]) } TABLESPACE tablespacename
where exchange_clause can be:
EXCHANGE PARTITION { (partition_name) | FOR (partition_value [, ...]) }
 WITH TABLE {[ONLY] ordinary_table_name | ordinary_table_name * | ONLY (ordinary_table_name)}
 [{ WITH | WITHOUT } VALIDATION] [VERBOSE]
where row_clause can be:
{ ENABLE | DISABLE } ROW MOVEMENT
where merge_clause can be:
MERGE PARTITIONS { partition_name } [, ...] INTO PARTITION partition_name
 [TABLESPACE tablespacename]
where modify_clause can be:
MODIFY PARTITION partition_name { UNUSABLE LOCAL INDEXES | REBUILD UNUSABLE LOCAL INDEXES }
where split_clause can be:
SPLIT PARTITION { partition_name | FOR (partition_value [, ...]) } { split_point_clause |
no_split_point_clause }
where split_point_clause can be:
AT (partition_value) INTO (PARTITION partition_name [TABLESPACE tablespacename] , PARTITION
partition_name [TABLESPACE tablespacename])

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 267

where no_split_point_clause can be:
INTO {(partition_less_than_item [, ...]) | (partition_start_end_item [, ...])}
where add_clause can be:
ADD {partition_less_than_item | partition_start_end_item}
where partition_less_than_item can be:
PARTITION partition_name VALUES LESS THAN ({ partition_value | MAXVALUE } [, ...]) [TABLESPACE
tablespacename]
where partition_start_end_item can be:
PARTITION partition_name {
 {START(partition_value) END (partition_value) EVERY (interval_value)} |
 {START(partition_value) END ({partition_value | MAXVALUE})} |
 {START(partition_value)} |
 {END({partition_value | MAXVALUE})}
} [TABLESPACE tablespace_name]
where drop_clause can be:
DROP PARTITION { partition_name | FOR (partition_value [, ...]) }

ALTER TABLESPACE

Modifies the attributes of a tablespace.

ALTER TABLESPACE tablespace_name
 RENAME TO new_tablespace_name;
ALTER TABLESPACE tablespace_name
 OWNER TO new_owner;
ALTER TABLESPACE tablespace_name
 SET ({tablespace_option = value} [, ...]);
ALTER TABLESPACE tablespace_name
 RESET (tablespace_option [, ...]);
ALTER TABLESPACE tablespace_name
 RESIZE MAXSIZE { UNLIMITED | 'space_size' };

ALTER TEXT SEARCH CONFIGURATION

Modifies the definition of a text search configuration. You can modify its mappings
from strings to dictionaries, change the configuration's name or owner, or modify
the parameters.

ALTER TEXT SEARCH CONFIGURATION name
 ADD MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 DROP MAPPING [IF EXISTS] FOR token_type [, ...]
ALTER TEXT SEARCH CONFIGURATION name RENAME TO new_name
ALTER TEXT SEARCH CONFIGURATION name OWNER TO new_owner
ALTER TEXT SEARCH CONFIGURATION name SET SCHEMA new_schema
ALTER TEXT SEARCH CONFIGURATION name SET ({configuration_option = value} [, ...])
ALTER TEXT SEARCH CONFIGURATION name RESET ({configuration_option} [, ...])

ALTER TEXT SEARCH DICTIONARY

Modifies the definition of a full-text search dictionary, including its parameters,
name, owner, and schema.

ALTER TEXT SEARCH DICTIONARY name (option = value | option [, ...]);
ALTER TEXT SEARCH DICTIONARY name RENAME TO new_name;
ALTER TEXT SEARCH DICTIONARY name OWNER TO new_owner;
ALTER TEXT SEARCH DICTIONARY name SET SCHEMA new_schema

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 268

ALTER TRIGGER
Renames a trigger.

ALTER TRIGGER name ON table_name RENAME TO new_name

ALTER TYPE
Modifies the definition of a type.

ALTER TYPE name action [, ...]
ALTER TYPE name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER TYPE name RENAME ATTRIBUTE attribute_name TO new_attribute_name [CASCADE | RESTRICT]
ALTER TYPE name RENAME TO new_name
ALTER TYPE name SET SCHEMA new_schema
ALTER TYPE name ADD VALUE [IF NOT EXISTS] new_enum_value [{ BEFORE | AFTER }
neighbor_enum_value]
ALTER TYPE name RENAME VALUE existing_enum_value TO new_enum_value

where action is one of:

 ADD ATTRIBUTE attribute_name data_type [COLLATE collation] [CASCADE | RESTRICT]
 DROP ATTRIBUTE [IF EXISTS] attribute_name [CASCADE | RESTRICT]
 ALTER ATTRIBUTE attribute_name [SET DATA] TYPE data_type [COLLATE collation] [CASCADE |
RESTRICT]

ALTER USER
Modifies the attributes of a database user.

ALTER USER user_name [[WITH] option [...]];
ALTER USER user_name
 RENAME TO new_name;
ALTER USER user_name [IN DATABASE database_name]
 SET configuration_parameter {{ TO | = } { value | DEFAULT }|FROM CURRENT};
ALTER USER user_name
 [IN DATABASE database_name] RESET {configuration_parameter|ALL};

where option can be:
{CREATEDB | NOCREATEDB}
 | {CREATEROLE | NOCREATEROLE}
 | {INHERIT | NOINHERIT}
 | {AUDITADMIN | NOAUDITADMIN}
 | {SYSADMIN | NOSYSADMIN}
 | {MONADMIN | NOMONADMIN}
 | {OPRADMIN | NOOPRADMIN}
 | {POLADMIN | NOPOLADMIN}
 | {USEFT | NOUSEFT}
 | {LOGIN | NOLOGIN}
 | {REPLICATION | NOREPLICATION}
 | {INDEPENDENT | NOINDEPENDENT}
 | {VCADMIN | NOVCADMIN}
 | {PERSISTENCE | NOPERSISTENCE}
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED | UNENCRYPTED] PASSWORD { 'password' [EXPIRED] | DISABLE | EXPIRED }
 | [ENCRYPTED | UNENCRYPTED] IDENTIFIED BY { 'password' [REPLACE 'old_password' | EXPIRED] |
DISABLE }
 | VALID BEGIN 'timestamp'
 | VALID UNTIL 'timestamp'
 | RESOURCE POOL 'respool'
 | USER GROUP 'groupuser'
 | PERM SPACE 'spacelimit'
 | TEMP SPACE 'tmpspacelimit'
 | SPILL SPACE 'spillspacelimit'
 | NODE GROUP logic_cluster_name
 | ACCOUNT { LOCK | UNLOCK }
 | PGUSER

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 269

ALTER VIEW
Modifies the auxiliary attributes of a view.

ALTER VIEW [IF EXISTS] view_name
 ALTER [COLUMN] column_name SET DEFAULT expression;
ALTER VIEW [IF EXISTS] view_name
 ALTER [COLUMN] column_name DROP DEFAULT;
ALTER VIEW [IF EXISTS] view_name
 OWNER TO new_owner;
ALTER VIEW [IF EXISTS] view_name
 RENAME TO new_name;
ALTER VIEW [IF EXISTS] view_name
 SET SCHEMA new_schema;
ALTER VIEW [IF EXISTS] view_name
 SET ({view_option_name [= view_option_value]} [, ...]);
ALTER VIEW [IF EXISTS] view_name
 RESET (view_option_name [, ...]);

ANALYSE|ANALYZE
Collects statistics about ordinary tables in a database, and stores the results in the
PG_STATISTIC system catalog. The execution plan generator uses these statistics
to determine which one is the most effective execution plan.

{ANALYZE | ANALYSE} [VERBOSE]
 [table_name [(column_name [, ...])]];
{ANALYZE | ANALYSE} [VERBOSE]
 [table_name [(column_name [, ...])]]
 PARTITION patrition_name;
{ANALYZE | ANALYSE} [VERBOSE]
 { foreign_table_name | FOREIGN TABLES };
{ANALYZE | ANALYSE} [VERBOSE]
 table_name ((column_1_name, column_2_name [, ...]));
{ANALYZE | ANALYSE} VERIFY {FAST|COMPLETE};
{ANALYZE | ANALYSE} VERIFY {FAST|COMPLETE}
 table_name|index_name [CASCADE];
{ANALYZE | ANALYSE} VERIFY {FAST|COMPLETE}
 table_name PARTITION (patrition_name) [CASCADE];

ANONYMOUS BLOCK
Applies to a script that is infrequently executed or a one-off activity. It is executed
in a session and is not stored.

[DECLARE [declare_statements]]
 BEGIN
 execution_staements
 END;
 /

BEGIN
Initiates an anonymous block or a single transaction.

start an anonymous block:
[DECLARE [declare_statements]]
BEGIN
execution_statements
END;
/

start a transaction:
BEGIN [WORK | TRANSACTION]
 [

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 270

 {
 ISOLATION LEVEL { READ COMMITTED | READ UNCOMMITTED | SERIALIZABLE | REPEATABLE READ }
 | { READ WRITE | READ ONLY }
 } [, ...]
];

CALL
Calls defined functions and stored procedures.

CALL [schema.] func_name (param_expr);

CHECKPOINT
A checkpoint is a point in the transaction log sequence at which all data files have
been updated to reflect the information in the log. All data files will be flushed to
a disk.

CHECKPOINT

CLEAN CONNECTION
Clears database connections. You may use this statement to delete a specific user's
connections to a specified database.

CLEAN CONNECTION
 TO { COORDINATOR (nodename [, ...]) | NODE (nodename [, ...]) | ALL [CHECK] [FORCE] }
 [FOR DATABASE dbname]
 [TO USER username];

CLOSE
Frees the resources associated with an open cursor.

CLOSE { cursor_name | ALL };

CLUSTER
Clusters a table based on an index.

CLUSTER [VERBOSE] table_name [USING index_name];
CLUSTER [VERBOSE] table_name PARTITION (partition_name) [USING index_name];
CLUSTER [VERBOSE];

COMMENT
Defines or changes the comment of an object.

COMMENT ON
{
 AGGREGATE agg_name (agg_type [, ...]) |
 CAST (source_type AS target_type) |
 COLLATION object_name |
 COLUMN { table_name.column_name | view_name.column_name } |
 CONSTRAINT constraint_name ON table_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 EXTENSION object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name ([{[argmode] [argname] argtype} [, ...]]) |

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 271

 INDEX object_name |
 LARGE OBJECT large_object_oid |
 OPERATOR operator_name (left_type, right_type) |
 OPERATOR CLASS object_name USING index_method |
 OPERATOR FAMILY object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 ROLE object_name |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SERVER object_name |
 TABLE object_name |
 TABLESPACE object_name |
 TEXT SEARCH CONFIGURATION object_name |
 TEXT SEARCH DICTIONARY object_name |
 TEXT SEARCH PARSER object_name |
 TEXT SEARCH TEMPLATE object_name |
 TYPE object_name |
 VIEW object_name
}
 IS 'text';

COMMIT

Commits all operations of a transaction.

{ COMMIT | END } [WORK | TRANSACTION];

COMMIT PREPARED

Commits a prepared two-phase transaction.

COMMIT PREPARED transaction_id;

COPY

Copies data between tables and files.

COPY table_name [(column_name [, ...])]
 FROM { 'filename' | STDIN }
 [[USING] DELIMITERS 'delimiters']
 [WITHOUT ESCAPING]
 [LOG ERRORS]
 [LOG ERRORS DATA]
 [REJECT LIMIT 'limit']
 [[WITH] (option [, ...])]
 | copy_option
 | [FIXED FORMATTER ({ column_name(offset, length) } [, ...])]
 | [TRANSFORM ({ column_name [data_type] [AS transform_expr] } [, ...])];
COPY table_name [(column_name [, ...])]
 TO { 'filename' | STDOUT }
 [[USING] DELIMITERS 'delimiters']
 [WITHOUT ESCAPING]
 [[WITH] (option [, ...])]
 | copy_option
 | [FIXED FORMATTER ({ column_name(offset, length) } [, ...])];
COPY query
 TO { 'filename' | STDOUT }
 [WITHOUT ESCAPING]
 [[WITH] (option [, ...])]
 | copy_option
 | [FIXED FORMATTER ({ column_name(offset, length) } [, ...])];

where option can be:
FORMAT 'format_name'
| OIDS [boolean]
| DELIMITER 'delimiter_character'

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 272

| NULL 'null_string'
| HEADER [boolean]
| FILEHEADER 'header_file_string'
| FREEZE [boolean]
| QUOTE 'quote_character'
| ESCAPE 'escape_character'
| EOL 'newline_character'
| NOESCAPING [boolean]
| FORCE_QUOTE { (column_name [, ...]) | * }
| FORCE_NOT_NULL (column_name [, ...])
| ENCODING 'encoding_name'
| IGNORE_EXTRA_DATA [boolean]
| FILL_MISSING_FIELDS [boolean]
| COMPATIBLE_ILLEGAL_CHARS [boolean]
| DATE_FORMAT 'date_format_string'
| TIME_FORMAT 'time_format_string'
| TIMESTAMP_FORMAT 'timestamp_format_string'
| SMALLDATETIME_FORMAT 'smalldatetime_format_string'

and copy_option can be:
OIDS
| NULL 'null_string'
| HEADER
| FILEHEADER 'header_file_string'
| FREEZE
| FORCE NOT NULL column_name [, ...]
| FORCE QUOTE { column_name [, ...] | * }
| BINARY
| CSV
| QUOTE [AS] 'quote_character'
| ESCAPE [AS] 'escape_character'
| EOL 'newline_character'
| ENCODING 'encoding_name'
| IGNORE_EXTRA_DATA
| FILL_MISSING_FIELDS
| COMPATIBLE_ILLEGAL_CHARS
| DATE_FORMAT 'date_format_string'
| TIME_FORMAT 'time_format_string'
| TIMESTAMP_FORMAT 'timestamp_format_string'
| SMALLDATETIME_FORMAT 'smalldatetime_format_string'

CREATE AUDIT POLICY
Creates a unified audit policy.

CREATE AUDIT POLICY [IF NOT EXISTS] policy_name { { privilege_audit_clause | access_audit_clause }
[filter_group_clause] [ENABLED | DISABLED] };

where privilege_audit_clause can be:
PRIVILEGES { DDL | ALL } [ON LABEL (resource_label_name [, ...])]

where access_audit_clause can be:
ACCESS { DML | ALL } [ON LABEL (resource_label_name [, ...])]

where filter_group_clause can be:
FILTER ON { (FILTER_TYPE (filter_value [, ...])) [, ...] }

where DDL can be:
{ (ALTER | ANALYZE | COMMENT | CREATE | DROP | GRANT | REVOKE | SET | SHOW | LOGIN_ACCESS |
LOGIN_FAILURE | LOGOUT | LOGIN) }

where DML can be:
{ (COPY | DEALLOCATE | DELETE_P | EXECUTE | REINDEX | INSERT | REPARE | SELECT | TRUNCATE |
UPDATE) }

where FILTER_TYPE can be:
{ APP | ROLES | IP }

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 273

CREATE CLIENT MASTER KEY

Creates a CMK object that can be used to encrypt a CEK object.

CREATE CLIENT MASTER KEY client_master_key_name
 [WITH] (['KEY_STORE' , 'KEY_PATH' , 'ALGORITHM']);

CREATE COLUMN ENCRYPTION KEY

Creates a CEK that can be used to encrypt a specified column in a table.

CREATE COLUMN ENCRYPTION KEY column_encryption_key_name
 [WITH] [VALUES] (['CLIENT_MASTER_KEY' , 'ALGORITHM']);

CREATE DATA SOURCE

Creates an external data source, which defines the information about the
database that openGauss will connect to.

CREATE DATA SOURCE src_name
 [TYPE 'type_str']
 [VERSION {'version_str' | NULL}]
 [OPTIONS (optname 'optvalue' [, ...])];

Valid optname are:
 DSN, USERNAME, PASSWORD, ENCODING

CREATE DATABASE

Creates a database. By default, the new database will be created only by cloning
the standard system database template0.

CREATE DATABASE database_name
 [[WITH] {[OWNER [=] user_name]|
 [TEMPLATE [=] template]|
 [ENCODING [=] encoding]|
 [LC_COLLATE [=] lc_collate]|
 [LC_CTYPE [=] lc_ctype]|
 [DBCOMPATIBILITY [=] compatibility_type]|
 [TABLESPACE [=] tablespace_name]|
 [CONNECTION LIMIT [=] connlimit]}[...]];

CREATE DIRECTORY

Creates a directory. The directory defines an alias for a path in the server file
system and is used to store data files used by users.

CREATE [OR REPLACE] DIRECTORY directory_name
AS 'path_name';

CREATE EXTENSION

Installs an extension.

CREATE EXTENSION [IF NOT EXISTS] extension_name
 [WITH] [SCHEMA schema_name]
 [VERSION version]
 [FROM old_version];

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 274

CREATE FOREIGN TABLE
Creates a foreign table.

CREATE FOREIGN TABLE [IF NOT EXISTS] table_name
({ column_name type_name POSITION(offset,length) [column_constraint]
 | LIKE source_table | table_constraint } [, ...])
SEVER gsmpp_server
OPTIONS ({ option_name ' value ' } [, ...])
[{ WRITE ONLY | READ ONLY }]
[WITH error_table_name | LOG INTO error_table_name]
[REMOTE LOG 'name']
[PER NODE REJECT LIMIT 'value']
[TO { GROUP groupname | NODE (nodename [, ...]) }];
CREATE FOREIGN TABLE [IF NOT EXISTS] table_name
({ column_name type_name
 [{ [CONSTRAINT constraint_name] NULL |
 [CONSTRAINT constraint_name] NOT NULL |
 column_constraint [...]}] |
 table_constraint} [, ...])
SERVER server_name
OPTIONS ({ option_name ' value ' } [, ...])
DISTRIBUTE BY {ROUNDROBIN | REPLICATION}
[TO { GROUP groupname | NODE (nodename [, ...]) }]
[PARTITION BY (column_name) [AUTOMAPPED]] ;
CREATE FOREIGN TABLE [IF NOT EXISTS] table_name
([{ column_name type_name | LIKE source_table } [, ...]])
SERVER server_name
OPTIONS ({ option_name ' value ' } [, ...])
[READ ONLY]
[DISTRIBUTE BY {ROUNDROBIN}]
[TO { GROUP groupname | NODE (nodename [, ...]) }];

where column_constraint can be:
[CONSTRAINT constraint_name]
{PRIMARY KEY | UNIQUE}
[NOT ENFORCED [ENABLE QUERY OPTIMIZATION | DISABLE QUERY OPTIMIZATION] | ENFORCED]
where table_constraint can be:
[CONSTRAINT constraint_name]
{PRIMARY KEY | UNIQUE} (column_name)
[NOT ENFORCED [ENABLE QUERY OPTIMIZATION | DISABLE QUERY OPTIMIZATION] | ENFORCED]

CREATE FUNCTION
Creates a function.

CREATE [OR REPLACE] FUNCTION function_name
 ([{ argname [argmode] argtype [{ DEFAULT | := | = } expression]} [, ...]])
 [RETURNS rettype [DETERMINISTIC]
 | RETURNS TABLE ({ column_name column_type } [, ...])]
 LANGUAGE lang_name
 [
 {IMMUTABLE | STABLE | VOLATILE}
 | {SHIPPABLE | NOT SHIPPABLE}
 | [NOT] LEAKPROOF
 | WINDOW
 | {CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT}
 | {[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER | AUTHID DEFINER |
AUTHID CURRENT_USER}
 | {FENCED | NOT FENCED}
 | {PACKAGE}
 | COST execution_cost
 | ROWS result_rows
 | SET configuration_parameter { {TO | =} value | FROM CURRENT }
] [...]
 {
 AS 'definition'
 | AS 'obj_file', 'link_symbol'

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 275

 }

CREATE [OR REPLACE] FUNCTION function_name
 ([{ argname [argmode] argtype [{ DEFAULT | := | = } expression] } [, ...]])
 RETURN rettype [DETERMINISTIC]
 [
 {IMMUTABLE | STABLE | VOLATILE }
 | {SHIPPABLE | NOT SHIPPABLE}
 | {PACKAGE}
 | [NOT] LEAKPROOF
 | {CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT }
 | {[EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER | | AUTHID DEFINER |
AUTHID CURRENT_USER}
 | COST execution_cost
 | ROWS result_rows
 | SET configuration_parameter { {TO | =} value | FROM CURRENT }
][...]
 {
 IS | AS
 } plsql_body
/

CREATE GROUP

Creates a user group.

CREATE GROUP group_name [[WITH] option [...]] [ENCRYPTED | UNENCRYPTED] { PASSWORD |
IDENTIFIED BY } { 'password' [EXPIRED] | DISABLE };

where option can be:
{SYSADMIN | NOSYSADMIN}
 | {MONADMIN | NOMONADMIN}
 | {OPRADMIN | NOOPRADMIN}
 | {POLADMIN | NOPOLADMIN}
 | {AUDITADMIN | NOAUDITADMIN}
 | {CREATEDB | NOCREATEDB}
 | {USEFT | NOUSEFT}
 | {CREATEROLE | NOCREATEROLE}
 | {INHERIT | NOINHERIT}
 | {LOGIN | NOLOGIN}
 | {REPLICATION | NOREPLICATION}
 | {INDEPENDENT | NOINDEPENDENT}
 | {VCADMIN | NOVCADMIN}
 | {PERSISTENCE | NOPERSISTENCE}
 | CONNECTION LIMIT connlimit
 | VALID BEGIN 'timestamp'
 | VALID UNTIL 'timestamp'
 | RESOURCE POOL 'respool'
 | USER GROUP 'groupuser'
 | PERM SPACE 'spacelimit'
 | TEMP SPACE 'tmpspacelimit'
 | SPILL SPACE 'spillspacelimit'
 | NODE GROUP logic_group_name
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid
 | DEFAULT TABLESPACE tablespace_name
 | PROFILE DEFAULT
 | PROFILE profile_name
 | PGUSER

CREATE INDEX

Create an index on a specified table.

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 276

CREATE [UNIQUE] INDEX [[schema_name.] index_name] ON table_name [USING method]
 ({ { column_name | (expression) } [COLLATE collation] [opclass] [ASC | DESC] [NULLS { FIRST |
LAST }] }[, ...])
 [WITH ({storage_parameter = value} [, ...])]
 [TABLESPACE tablespace_name]
 [WHERE predicate];
CREATE [UNIQUE] INDEX [[schema_name.] index_name] ON table_name [USING method]
({{ column_name | (expression) } [COLLATE collation] [opclass] [ASC | DESC] [NULLS LAST] }[, ...])
[LOCAL [({ PARTITION index_partition_name [TABLESPACE index_partition_tablespace] } [, ...])] |
GLOBAL]
[WITH ({ storage_parameter = value } [, ...])]
[TABLESPACE tablespace_name];

CREATE LANGUAGE

Defines a new procedural language. A standalone or centralized system does not
support creating procedural languages.

CREATE [UNIQUE] INDEX [[schema_name.] index_name] ON table_name [USING method]
 ({ { column_name | (expression) } [COLLATE collation] [opclass] [ASC | DESC] [NULLS { FIRST |
LAST }] }[, ...])
 [WITH ({storage_parameter = value} [, ...])]
 [TABLESPACE tablespace_name]
 [WHERE predicate];
CREATE [UNIQUE] INDEX [[schema_name.] index_name] ON table_name [USING method]
({{ column_name | (expression) } [COLLATE collation] [opclass] [ASC | DESC] [NULLS LAST] }[, ...])
[LOCAL [({ PARTITION index_partition_name [TABLESPACE index_partition_tablespace] } [, ...])] |
GLOBAL]
[WITH ({ storage_parameter = value } [, ...])]
[TABLESPACE tablespace_name];

openGauss=# \h CREATE LANGUAGE
Command: CREATE LANGUAGE
Description: define a new procedural language
Syntax:
CREATE [OR REPLACE] [PROCEDURAL] LANGUAGE name;
CREATE [OR REPLACE] [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [INLINE inline_handler] [VALIDATOR valfunction];

CREATE MASKING POLICY

Creates a masking policy.

CREATE MASKING POLICY policy_name masking_clause [, ...] [policy_filter_clause] [ENABLE | DISABLE];

where masking_clause can be:
masking_function ON LABEL(label_name [, ...])

where masking_function can be:
{ maskall | randommasking | creditcardmasking | basicemailmasking | fullemailmasking | shufflemasking |
alldigitsmasking | regexpmasking }

where policy_filter_clause can be:
FILTER ON { (FILTER_TYPE (filter_value [, ...])) [, ...] }

where FILTER_TYPE can be:
{ APP | ROLES | IP }

CREATE MATERIALIZED VIEW

Creates a complete-refresh materialized view that can be refreshed by using
REFRESH MATERIALIZED VIEW to refresh the data in the materialized view.

CREATE [INCREMENTAL] MATERIALIZED VIEW table_name
 [(column_name [, ...])]

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 277

 [TABLESPACE tablespace_name]
 AS query

CREATE MODEL
Trains a machine learning model and saves the model.

CREATE MODEL model_name USING algorithm_name
[FEATURES { {expression [[AS] output_name]} [, ...] }]
[TARGET { {expression [[AS] output_name]} [, ...] }]
FROM { table_name | select_query }
WITH hyperparameter_name = { hyperparameter_value | DEFAULT } [, ...] }

CREATE OPERATOR
Defines a new operator.

CREATE OPERATOR name (
 PROCEDURE = function_name
 [, LEFTARG = left_type] [, RIGHTARG = right_type]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
)

CREATE PACKAGE
Creates a package.

CREATE [OR REPLACE] PACKAGE [schema] package_name
 [invoker_rights_clause] { IS | AS } item_list_1 END package_name;

CREATE PROCEDURE
Creates a stored procedure.
CREATE [OR REPLACE] PACKAGE [schema] package_name

 [invoker_rights_clause] { IS | AS } item_list_1 END package_name;

openGauss=# \h CREATE PROCEDURE
Command: CREATE PROCEDURE
Description: create a procedure
Syntax:
CREATE [OR REPLACE] PROCEDURE procedure_name
 [({[argmode] [argname] argtype [{ DEFAULT | := | = } expression]}[,...])]
 { IS | AS } plsql_body
/

CREATE RESOURCE LABEL
Creates a resource label.

CREATE RESOURCE LABEL [IF NOT EXISTS] label_name ADD label_item_list[, ...];

where label_item_list can be:
resource_type(resource_path[, ...])

where resource_type can be:
{ TABLE | COLUMN | SCHEMA | VIEW | FUNCTION }

CREATE RESOURCE POOL
Creates a resource pool and specifies the Cgroup of the resource pool.

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 278

CREATE RESOURCE POOL pool_name
 [WITH ({MEM_PERCENT=pct | CONTROL_GROUP="group_name" | ACTIVE_STATEMENTS=stmt |
MAX_DOP = dop | MEMORY_LIMIT='memory_size' | io_limits=io_limits | io_priority='priority' |
nodegroup='nodegroup_name' | is_foreign = boolean }[, ...])];

CREATE ROLE

Creates a role.

CREATE ROLE role_name [[WITH] option [...]] [ENCRYPTED | UNENCRYPTED] { PASSWORD |
IDENTIFIED BY } { 'password' [EXPIRED] | DISABLE };

where option can be:
{SYSADMIN | NOSYSADMIN}
 | {MONADMIN | NOMONADMIN}
 | {OPRADMIN | NOOPRADMIN}
 | {POLADMIN | NOPOLADMIN}
 | {AUDITADMIN | NOAUDITADMIN}
 | {CREATEDB | NOCREATEDB}
 | {USEFT | NOUSEFT}
 | {CREATEROLE | NOCREATEROLE}
 | {INHERIT | NOINHERIT}
 | {LOGIN | NOLOGIN}
 | {REPLICATION | NOREPLICATION}
 | {INDEPENDENT | NOINDEPENDENT}
 | {VCADMIN | NOVCADMIN}
 | {PERSISTENCE | NOPERSISTENCE}
 | CONNECTION LIMIT connlimit
 | VALID BEGIN 'timestamp'
 | VALID UNTIL 'timestamp'
 | RESOURCE POOL 'respool'
 | USER GROUP 'groupuser'
 | PERM SPACE 'spacelimit'
 | TEMP SPACE 'tmpspacelimit'
 | SPILL SPACE 'spillspacelimit'
 | NODE GROUP logic_cluster_name
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid
 | DEFAULT TABLESPACE tablespace_name
 | PROFILE DEFAULT
 | PROFILE profile_name
 | PGUSER

CREATE ROW LEVEL SECURITY POLICY

Creates a row-level access control policy for a table.

CREATE [ROW LEVEL SECURITY] POLICY policy_name ON table_name
 [AS { PERMISSIVE | RESTRICTIVE }]
 [FOR { ALL | SELECT | UPDATE | DELETE }]
 [TO { role_name | PUBLIC } [, ...]]
 USING (using_expression)

CREATE SCHEMA

Creates a schema.

CREATE SCHEMA schema_name
 [AUTHORIZATION user_name] [WITH BLOCKCHAIN] [schema_element [...]];

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 279

CREATE SEQUENCE
Aadds a sequence to the current database. The owner of the sequence is the user
who creates it.

CREATE SEQUENCE name [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE | NOMINVALUE] [MAXVALUE maxvalue | NO MAXVALUE |
NOMAXVALUE]
 [START [WITH] start] [CACHE cache] [[NO] CYCLE | NOCYCLE]
 [OWNED BY { table_name.column_name | NONE }];

CREATE SERVER
Defines a new foreign server.

CREATE SERVER server_name
 FOREIGN DATA WRAPPER fdw_name
 OPTIONS ({ option_name ' value ' } [, ...]) ;

CREATE SYNONYM
Creates a synonym object. A synonym is an alias of a database object and is used
to record the mapping between database object names. You can use synonyms to
access associated database objects.

CREATE [OR REPLACE] SYNONYM synonym_name
 FOR object_name;

CREATE TABLE
Creates an empty table in the current database. The table will be owned by the
creator.

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT EXISTS] table_name
({ column_name data_type [compress_mode] [COLLATE collation] [column_constraint [...]] [encrypted
with ('column_encryption_key', 'encryption_type')]
 | table_constraint
 | LIKE source_table [like_option [...]] }
 [, ...])
[WITH ({storage_parameter = value} [, ...])]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[COMPRESS | NOCOMPRESS]
[TABLESPACE tablespace_name];

where column_constraint can be:
[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) |
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) STORED |
 UNIQUE index_parameters |
 PRIMARY KEY index_parameters |
 ENCRYPTED WITH (COLUMN_ENCRYPTION_KEY = column_encryption_key, ENCRYPTION_TYPE =
encryption_type_value) |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE]
where table_constraint can be:
[CONSTRAINT constraint_name]
{ CHECK (expression) |
 UNIQUE (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 PARTIAL CLUSTER KEY (column_name [, ...]) |
 FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 280

 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE]
where compress_mode can be:
{ DELTA | PREFIX | DICTIONARY | NUMSTR | NOCOMPRESS }
where like_option can be:
{ INCLUDING | EXCLUDING } { DEFAULTS | GENERATED | CONSTRAINTS | INDEXES | STORAGE |
COMMENTS | PARTITION | RELOPTIONS | DISTRIBUTION | ALL }
where index_parameters can be:
[WITH ({storage_parameter = value} [, ...])]
[USING INDEX TABLESPACE tablespace_name]

CREATE TABLE AS

Creates a table from the results of a query.

CREATE [UNLOGGED] TABLE table_name
 [(column_name [, ...])]
 [WITH ({storage_parameter = value} [, ...])]
 [COMPRESS | NOCOMPRESS]
 [TABLESPACE tablespace_name]
 [DISTRIBUTE BY { REPLICATION | { [HASH] (column_name) } }]
 [TO { GROUP groupname | NODE (nodename [, ...]) }]
 AS query
 [WITH [NO] DATA];

CREATE TABLE PARTITION

Creates a partitioned table. Partitioning refers to splitting what is logically one
large table into smaller physical pieces based on specific schemes. The table based
on the logic is called a partitioned table, and each physical piece is called a
partition. A partitioned table is a logical table and does not store data. Data is
stored in physical partitions.

CREATE TABLE [IF NOT EXISTS] partition_table_name
([
 { column_name data_type [COLLATE collation] [column_constraint [...]]
 | table_constraint
 | LIKE source_table [like_option [...]] }
 [, ...]
])
[WITH ({storage_parameter = value} [, ...])]
[COMPRESS | NOCOMPRESS]
[TABLESPACE tablespace_name]
[DISTRIBUTE BY { REPLICATION | { [HASH] (column_name) } }]
[TO { GROUP groupname | NODE (nodename [, ...]) }]
PARTITION BY {
 {VALUES (partition_key)} |
 {RANGE (partition_key) [INTERVAL ('interval_expr') [STORE IN (tablespace_name [, ...])]]
(partition_less_than_item [, ...])} |
 {RANGE (partition_key) [INTERVAL ('interval_expr') [STORE IN (tablespace_name [, ...])]]
(partition_start_end_item [, ...])} |
 {LIST | HASH (partition_key) (PARTITION partition_name [VALUES (list_values_clause)]
opt_table_space)}
 NOTICE: LIST/HASH partition is only available in CENTRALIZED mode!
} [{ ENABLE | DISABLE } ROW MOVEMENT];

where column_constraint can be:
[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) |
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) STORED |
 UNIQUE index_parameters |
 PRIMARY KEY index_parameters |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 281

 [ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE]
where table_constraint can be:
[CONSTRAINT constraint_name]
{ CHECK (expression) |
 UNIQUE (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE action] [ON UPDATE action] }
[DEFERRABLE | NOT DEFERRABLE | INITIALLY DEFERRED | INITIALLY IMMEDIATE]
where index_parameters can be:
[WITH ({storage_parameter = value} [, ...])]
[USING INDEX TABLESPACE tablespace_name]
where like_option can be:
{ INCLUDING | EXCLUDING } { DEFAULTS | GENERATED | CONSTRAINTS | INDEXES | STORAGE |
COMMENTS | RELOPTIONS | DISTRIBUTION | ALL }
where partition_less_than_item can be:
PARTITION partition_name VALUES LESS THAN ({ partition_value | MAXVALUE }) [TABLESPACE
tablespace_name]
where partition_start_end_item can be:
PARTITION partition_name {
 {START(partition_value) END (partition_value) EVERY (interval_value)} |
 {START(partition_value) END ({partition_value | MAXVALUE})} |
 {START(partition_value)} |
 {END({partition_value | MAXVALUE})}
} [TABLESPACE tablespace_name]

CREATE TABLESPACE
Creates a tablespace in a database.

CREATE TABLESPACE tablespace_name
 [OWNER user_name] [RELATIVE] LOCATION 'directory' [MAXSIZE 'space_size']
 [with_option_clause];

where option_clause can be:
WITH (filesystem= { 'systemtype '| " systemtype " | systemtype }
 [{ , address = { ' ip:port [, ...] ' | " ip:port [, ...] "} }]
, cfgpath = { 'path '| " path " } ,storepath = { 'rootpath '| " rootpath "}
[{, random_page_cost = { 'value '| " value " | value }}]
[{,seq_page_cost = { 'value '| " value " | value }}])

CREATE TEXT SEARCH CONFIGURATION
Creates a text search configuration. A text search configuration specifies a text
search parser that can divide a string into tokens, plus dictionaries that can be
used to determine which tokens are of interest for searching.

CREATE TEXT SEARCH CONFIGURATION name (
 PARSER = parser_name |
 COPY = source_config
) [WITH ({configuration_option = value} [, ...])];

CREATE TEXT SEARCH DICTIONARY
Deletes a full-text retrieval dictionary.

CREATE TEXT SEARCH DICTIONARY name
 (TEMPLATE = template_name | COPY = source_config
 [, option = value [, ...]]);

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 282

CREATE TRIGGER

Creates a trigger. The trigger will be associated with the specified table or view,
and will execute the specified functions under certain conditions.

CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event [OR ...] }
 ON table_name
 [FROM referenced_table_name]
 { NOT DEFERRABLE | [DEFERRABLE] { INITIALLY IMMEDIATE | INITIALLY DEFERRED } }
 [FOR [EACH] { ROW | STATEMENT }]
 [WHEN (condition)]
 EXECUTE PROCEDURE function_name (arguments)

where event can be one of:

 INSERT
 UPDATE [OF column_name [, ...]]
 DELETE
 TRUNCATE

CREATE TYPE

Defines a new data type for use in the current database. The user who defines a
type becomes its owner. Types are designed only for row-store tables.

CREATE TYPE name AS
 ([attribute_name data_type [COLLATE collation] [, ...]])

CREATE TYPE name AS ENUM
 (['label' [, ...]])

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, TYPMOD_IN = type_modifier_input_function]
 [, TYPMOD_OUT = type_modifier_output_function]
 [, ANALYZE = analyze_function]
 [, INTERNALLENGTH = { internallength | VARIABLE }]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, LIKE = like_type]
 [, CATEGORY = category]
 [, PREFERRED = preferred]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
 [, COLLATABLE = collatable]
)

CREATE TYPE name

CREATE USER

Creates a user.

CREATE USER user_name [[WITH] option [...]] [ENCRYPTED | UNENCRYPTED] { PASSWORD |
IDENTIFIED BY } { 'password' [EXPIRED] | DISABLE };

where option can be:
{SYSADMIN | NOSYSADMIN}
 | {MONADMIN | NOMONADMIN}
 | {OPRADMIN | NOOPRADMIN}
 | {POLADMIN | NOPOLADMIN}

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 283

 | {AUDITADMIN | NOAUDITADMIN}
 | {CREATEDB | NOCREATEDB}
 | {USEFT | NOUSEFT}
 | {CREATEROLE | NOCREATEROLE}
 | {INHERIT | NOINHERIT}
 | {LOGIN | NOLOGIN}
 | {REPLICATION | NOREPLICATION}
 | {INDEPENDENT | NOINDEPENDENT}
 | {VCADMIN | NOVCADMIN}
 | {PERSISTENCE | NOPERSISTENCE}
 | CONNECTION LIMIT connlimit
 | VALID BEGIN 'timestamp'
 | VALID UNTIL 'timestamp'
 | RESOURCE POOL 'respool'
 | USER GROUP 'groupuser'
 | PERM SPACE 'spacelimit'
 | TEMP SPACE 'tmpspacelimit'
 | SPILL SPACE 'spillspacelimit'
 | NODE GROUP logic_cluster_name
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid
 | DEFAULT TABLESPACE tablespace_name
 | PROFILE DEFAULT
 | PROFILE profile_name
 | PGUSER

CREATE VIEW
Creates a view.

CREATE [OR REPLACE] [TEMP | TEMPORARY] VIEW view_name [(column_name [, ...])]
 [WITH ({view_option_name [= view_option_value]} [, ...])]
 AS query;

CREATE WEAK PASSWORD DICTIONARY
Inserts one or more weak passwords into the gs_global_config table.

CREATE WEAK PASSWORD DICTIONARY
 [WITH VALUES] ({'weak_password'} [, ...]);

CURSOR
Defines a cursor to retrieve a small number of rows out of a large query.

CURSOR cursor_name
 [BINARY] [INSENSITIVE] [[NO] SCROLL]
 FOR query ;

DEALLOCATE
Deallocates a previously prepared statement. If you do not explicitly deallocate a
prepared statement, it is deallocated when the session ends.

DEALLOCATE [PREPARE] { name | ALL };

DECLARE
Deallocates a previously prepared statement. If you do not explicitly deallocate a
prepared statement, it is deallocated when the session ends.

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 284

1. declare a cursor:
DECLARE cursor_name [BINARY] [NO SCROLL]
 CURSOR [{ WITH | WITHOUT } HOLD] FOR query ;

2. start an anonymous block:
[DECLARE [declare_statements]]
BEGIN
execution_statements
END;
/

DELETE

Deletes rows that satisfy the WHERE clause from the specified table. If the WHERE
clause is absent, it will delete all rows in the table. The result is a valid, but an
empty table.

[WITH [RECURSIVE] with_query [, ...]]
DELETE [/*+ plan_hint */] FROM [ONLY] table_name [*] [[AS] alias]
 [USING using_list]
 [WHERE condition | WHERE CURRENT OF cursor_name] [LIMIT row_count]
 [RETURNING { * | { output_expr [[AS] output_name] } [, ...] }];

DO

Executes an anonymous code block.

DO [LANGUAGE lang_name] code;

DROP AUDIT POLICY

Deletes an audit policy.

DROP AUDIT POLICY [IF EXISTS] policy_name;

DROP CLIENT MASTER KEY

Deletes a CMK.

DROP CLIENT MASTER KEY [IF EXISTS] client_master_key_name [, ...];

DROP COLUMN ENCRYPTION KEY

Deletes a CEK.

DROP COLUMN ENCRYPTION KEY [IF EXISTS] client_column_key_name [, ...];

DROP DATA SOURCE

Deletes a data source.

DROP DATA SOURCE [IF EXISTS] src_name [CASCADE | RESTRICT];

DROP DATABASE

Deletes a database.

DROP DATABASE [IF EXISTS] database_name;

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 285

DROP DIRECTORY
Deletes a directory.

DROP DIRECTORY [IF EXISTS] directory_name;

DROP EXTENSION
Deletes an extension.

DROP EXTENSION [IF EXISTS] name [, ...] [CASCADE | RESTRICT];

DROP FOREIGN TABLE
Deletes a foreign table.

DROP FOREIGN TABLE [IF EXISTS]
table_name [, ...] [CASCADE | RESTRICT];

DROP FUNCTION
Deletes a function.

DROP FUNCTION [IF EXISTS] function_name [([{[argmode] [argname] argtype} [, ...]]) [CASCADE |
RESTRICT]];

DROP GROUP
Deletes a user group.

DROP GROUP [IF EXISTS] group_name [, ...];

DROP INDEX
Deletes an index.

DROP INDEX [IF EXISTS]
index_name [, ...] [CASCADE | RESTRICT];

DROP MASKING POLICY
Deletes a masking policy.

DROP MASKING POLICY [IF EXISTS] policy_name;

DROP MATERIALIZED VIEW
Forcibly deletes an existing materialized view from the database.

DROP MATERIALIZED VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP MODEL
Deletes a model that has been trained and saved.

DROP MODEL model_name;

DROP OPERATOR
Not supported in openGauss currently.

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 286

DROP OPERATOR [IF EXISTS] name ({ left_type | NONE } , { right_type | NONE }) [CASCADE |
RESTRICT]

DROP OWNED

Deletes the database objects owned by a database role.

DROP OWNED BY name [, ...] [CASCADE | RESTRICT];

DROP PACKAGE

Deletes a package or package body.

DROP PACKAGE [IF EXISTS] package_name;

DROP PROCEDURE

Deletes a stored procedure.

DROP PROCEDURE [IF EXISTS] procedure_name;

DROP RESOURCE LABEL

Deletes a resource label.

DROP RESOURCE LABEL [IF EXISTS] policy_name[, ...];

DROP RESOURCE POOL

Deletes a resource pool.

DROP RESOURCE POOL [IF EXISTS] pool_name;

DROP ROLE

Deletes a role.

DROP ROLE [IF EXISTS] role_name [, ...];

DROP ROW LEVEL SECURITY POLICY

Deletes a row-level access control policy from a table.

DROP [ROW LEVEL SECURITY] POLICY [IF EXISTS] policy_name ON table_name [CASCADE | RESTRICT]

DROP SCHEMA

Deletes a schema from the current database.

DROP SCHEMA [IF EXISTS] schema_name [, ...] [CASCADE | RESTRICT];

DROP SEQUENCE

Deletes a sequence from the current database.

DROP SEQUENCE [IF EXISTS] {[schema.]sequence_name} [, ...] [CASCADE | RESTRICT];

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 287

DROP SERVER
Deletes a data server.

DROP SERVER [IF EXISTS] server_name [{ CASCADE | RESTRICT }] ;

DROP SYNONYM
Deletes a synonym.

DROP SYNONYM [IF EXISTS] synonym_name [CASCADE | RESTRICT];

DROP TABLE
Deletes a table.

DROP TABLE [IF EXISTS]
{[schema.]table_name} [, ...] [CASCADE | RESTRICT];

DROP TABLESPACE
Deletes a tablespace.

DROP TABLESPACE [IF EXISTS] tablespace_name;

DROP TEXT SEARCH CONFIGURATION
Deletes a text search configuration.

DROP TEXT SEARCH CONFIGURATION [IF EXISTS] name [CASCADE | RESTRICT]

DROP TEXT SEARCH DICTIONARY
Deletes a full-text retrieval dictionary.

DROP TEXT SEARCH DICTIONARY [IF EXISTS] name [CASCADE | RESTRICT];

DROP TRIGGER
Deletes a trigger.

DROP TRIGGER [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

DROP TYPE
Deletes a user-defined data type.

DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

DROP USER
Deletes a user and the schema with the same name as the user.

DROP USER [IF EXISTS] user_name [, ...] [CASCADE | RESTRICT];

DROP VIEW
Forcibly deletes a view from the database.

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 288

DROP VIEW [IF EXISTS] view_name [, ...] [CASCADE | RESTRICT];

DROP WEAK PASSWORD DICTIONARY
Clears all weak passwords in gs_global_config.

DROP WEAK PASSWORD DICTIONARY;

END
Commits all operations of a transaction.

END [WORK | TRANSACTION]

EXECUTE
Executes a prepared statement. Because a prepared statement exists only in the
lifetime of the session, the prepared statement must be created earlier in the
current session by using the PREPARE statement.

EXECUTE name [(parameter [, ...])];

EXECUTE DIRECT
Executes an SQL statement on a specified node. Generally, the cluster
automatically allocates an SQL statement to proper nodes. EXECUTE DIRECT is
mainly used for database maintenance and testing.

EXPLAIN [(option [, ...])] statement;
EXPLAIN { [{ ANALYZE | ANALYSE }] [VERBOSE] | PERFORMANCE } statement;

where option can be:
ANALYZE [boolean] |
 ANALYSE [boolean] |
 VERBOSE [boolean] |
 COSTS [boolean] |
 CPU [boolean] |
 DETAIL [boolean] |
 NODES [boolean] |
 NUM_NODES [boolean] |
 BUFFERS [boolean] |
 TIMING [boolean] |
 PLAN [boolean] |
 FORMAT { TEXT | XML | JSON | YAML }

openGauss=# \h EXECUTE DIRECT
Command: EXECUTE DIRECT
Description: launch queries directly to dedicated nodes
Syntax:
EXECUTE DIRECT ON (nodename [, ...]) query;
EXECUTE DIRECT ON { COORDINATORS | DATANODES | ALL } query;

EXPLAIN
Shows the execution plan of an SQL statement.

EXPLAIN [(option [, ...])] statement;
EXPLAIN { [{ ANALYZE | ANALYSE }] [VERBOSE] | PERFORMANCE } statement;

where option can be:
ANALYZE [boolean] |
 ANALYSE [boolean] |
 VERBOSE [boolean] |

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 289

 COSTS [boolean] |
 CPU [boolean] |
 DETAIL [boolean] |
 NODES [boolean] |
 NUM_NODES [boolean] |
 BUFFERS [boolean] |
 TIMING [boolean] |
 PLAN [boolean] |
 FORMAT { TEXT | XML | JSON | YAML }

FETCH
Retrieves rows using a previously created cursor.

FETCH [direction { FROM | IN }] cursor_name;

where direction can be:
NEXT
 | PRIOR
 | FIRST
 | LAST
 | ABSOLUTE count
 | RELATIVE count
 | count
 | ALL
 | FORWARD
 | FORWARD count
 | FORWARD ALL
 | BACKWARD
 | BACKWARD count
 | BACKWARD ALL

GRANT
Grants permissions to roles and users.

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES |
 ALTER | DROP | COMMENT | INDEX | VACUUM } [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { {{ SELECT | INSERT | UPDATE | REFERENCES | COMMENT } (column_name [, ...])}
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { SELECT | UPDATE | USAGE | ALTER | DROP | COMMENT } [, ...]
 | ALL [PRIVILEGES] }
 ON { [SEQUENCE] sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { CREATE | CONNECT | TEMPORARY | TEMP | ALTER | DROP | COMMENT }
 [, ...] | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { USAGE | DROP } [, ...] | ALL [PRIVILEGES] }
 ON CLIENT_MASTER_KEY client_master_key
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { USAGE | DROP } [, ...] | ALL [PRIVILEGES] }
 ON COLUMN_ENCRYPTION_KEY column_encryption_key

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 290

 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { USAGE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { EXECUTE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON { FUNCTION {function_name ([{[argmode] [arg_name] arg_type} [, ...]])} [, ...]
 | ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { CREATE | USAGE | COMPUTE | ALTER | DROP } [, ...] | ALL [PRIVILEGES] }
 ON NODE GROUP group_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }
 ON LARGE OBJECT loid [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { CREATE | USAGE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { CREATE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { USAGE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { USAGE | ALL [PRIVILEGES] }
 ON DATA SOURCE src_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { READ | WRITE } [, ...] | ALL [PRIVILEGES] }
 ON DIRECTORY directory_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT { { EXECUTE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON PACKAGE package_name [, ...]
 TO { [GROUP] role_name | PUBLIC } [, ...]
 [WITH GRANT OPTION];
GRANT role_name [, ...]
 TO role_name [, ...]
 [WITH ADMIN OPTION];
GRANT ALL { PRIVILEGES | PRIVILEGE }
 TO role_name;

INSERT
Inserts new rows into a table.

[WITH [RECURSIVE] with_query [, ...]]
INSERT [/*+ plan_hint */] INTO table_name [(column_name [, ...])]
 { DEFAULT VALUES | VALUES {({ expression | DEFAULT } [, ...]) }[, ...] | query }
 [ON DUPLICATE KEY UPDATE { NOTHING | { column_name = { expression | DEFAULT } } [, ...] }]
 [RETURNING {* | {output_expression [[AS] output_name] }[, ...]}];

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 291

LOCK
Obtains a table-level lock.

LOCK [TABLE] {[ONLY] name [, ...]| {name [*]} [, ...]}
 [IN {ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE | SHARE | SHARE
ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE} MODE]
 [NOWAIT];

MERGE INTO
Conditionally matches data in a target table with that in a source table. If data
matches, UPDATE is executed on the target table; if data does not match, INSERT
is executed. You can use this syntax to run UPDATE and INSERT at a time for
convenience

MERGE [/*+ plan_hint */] INTO table_name [[AS] alias]
USING { { table_name | view_name } | subquery } [[AS] alias]
ON (condition)
[
 WHEN MATCHED THEN
 UPDATE SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = ({ expression | DEFAULT } [, ...]) } [, ...]
 [WHERE condition]
]
[
 WHEN NOT MATCHED THEN
 INSERT { DEFAULT VALUES |
 [(column_name [, ...])] VALUES ({ expression | DEFAULT } [, ...]) [, ...] [WHERE condition] }
];

MOVE
Repositions a cursor without retrieving any data. MOVE works exactly like the
FETCH command, except it only positions the cursor and does not return rows.

MOVE [direction [FROM | IN]] cursor_name;

where direction can be:
NEXT
 | PRIOR
 | FIRST
 | LAST
 | ABSOLUTE count
 | RELATIVE count
 | count
 | ALL
 | FORWARD
 | FORWARD count
 | FORWARD ALL
 | BACKWARD
 | BACKWARD count
 | BACKWARD ALL

PREPARE
Creates a prepared statement.

PREPARE name [(data_type [, ...])] AS statement;

PREPARE TRANSACTION
Prepares the current transaction for two-phase commit.

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 292

PREPARE TRANSACTION transaction_id;

REASSIGN OWNED
Changes the owner of the database object.

REASSIGN OWNED BY old_role [, ...] TO new_role;

REFRESH MATERIALIZED VIEW
Refreshes a materialized view in complete refresh mode.

REFRESH [INCREMENTAL] MATERIALIZED VIEW name

REINDEX
Rebuilds an index using the data stored in the index's table, replacing the old copy
of the index.

REINDEX { INDEX | [INTERNAL] TABLE | DATABASE | SYSTEM } name [FORCE];
REINDEX { INDEX | [INTERNAL] TABLE } name
 PARTITION partition_name [FORCE];

RESET
Restores run-time parameters to their default values. The default values are
defined in the postgresql.conf configuration file.

RESET {configuration_parameter | CURRENT_SCHEMA | TIME ZONE | TRANSACTION ISOLATION LEVEL |
SESSION AUTHORIZATION | ALL };

REVOKE
Revokes permissions from one or more roles.

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES |
 ALTER | DROP | COMMENT | INDEX | VACUUM } [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { {{ SELECT | INSERT | UPDATE | REFERENCES | COMMENT } (column_name [, ...])}
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { { SELECT | UPDATE | ALTER | DROP | COMMENT } [, ...]
 | ALL [PRIVILEGES] }
 ON { [SEQUENCE] sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { { CREATE | CONNECT | TEMPORARY | TEMP | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 293

 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { { USAGE | DROP } [, ...] | ALL [PRIVILEGES] }
 ON CLIENT_MASTER_KEYS client_master_keys_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { { USAGE | DROP } [, ...] | ALL [PRIVILEGES]}
 ON COLUMN_ENCRYPTION_KEYS column_encryption_keys_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { { READ | WRITE } [, ...] | ALL [PRIVILEGES] }
 ON DIRECTORY directory_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { { USAGE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { { EXECUTE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON { FUNCTION {function_name ([{[argmode] [arg_name] arg_type} [, ...]])} [, ...]
 | ALL FUNCTIONS IN SCHEMA schema_name [, ...] }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { {CREATE | USAGE | COMPUTE | ALTER | DROP } [, ...] | ALL [PRIVILEGES] }
 ON NODE GROUP group_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }
 ON LARGE OBJECT loid [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { { CREATE | USAGE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { { CREATE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { { USAGE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON DATA SOURCE src_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...];
REVOKE [GRANT OPTION FOR]
 { { READ | WRITE } [, ...] | ALL [PRIVILEGES] }
 ON DIRECTORY directory_name [, ...]

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 294

 FROM { [GROUP] role_name | PUBLIC } [, ...];
REVOKE [GRANT OPTION FOR]
 { { EXECUTE | ALTER | DROP | COMMENT } [, ...] | ALL [PRIVILEGES] }
 ON PACKAGE package_name [, ...]
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT];
REVOKE [ADMIN OPTION FOR]
 role_name [, ...] FROM role_name [, ...]
 [CASCADE | RESTRICT];
REVOKE ALL { PRIVILEGES | PRIVILEGE } FROM role_name;

ROLLBACK
Rolls back the current transaction and backs out all updates in the transaction.

ROLLBACK [WORK | TRANSACTION];

ROLLBACK PREPARED
Prepares the current transaction for two-phase commit.

ROLLBACK PREPARED transaction_id;

SAVEPOINT
Establishes a new savepoint within the current transaction.

SAVEPOINT savepoint_name;

SELECT
Retrieves data from a table or view.

[WITH [RECURSIVE] with_query [, ...]]
SELECT [/*+ plan_hint */] [ALL | DISTINCT [ON (expression [, ...])]]
 { * | {expression [[AS] output_name]} [, ...] }
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY grouping_element [, ...]]
 [HAVING condition [, ...]]
 [WINDOW {window_name AS (window_definition)} [, ...]]
 [{ UNION | INTERSECT | EXCEPT | MINUS } [ALL | DISTINCT] select]
 [ORDER BY {expression [[ASC | DESC | USING operator] | nlssort_expression_clause] [NULLS { FIRST |
LAST }]} [, ...]]
 [LIMIT { [offset,] count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [{FOR { UPDATE | SHARE } [OF table_name [, ...]] [NOWAIT]} [...]];
TABLE { ONLY {(table_name)| table_name} | table_name [*]};

where from_item can be:
[ONLY] table_name [*] [partition_clause] [[AS] alias [(column_alias [, ...])]]
[TABLESAMPLE sampling_method (argument [, ...]) [REPEATABLE (seed)]]
|(select) [AS] alias [(column_alias [, ...])]
|with_query_name [[AS] alias [(column_alias [, ...])]]
|function_name ([argument [, ...]]) [AS] alias [(column_alias [, ...] | column_definition [, ...])]
|function_name ([argument [, ...]]) AS (column_definition [, ...])
|from_item [NATURAL] join_type from_item [ON join_condition | USING (join_column [, ...])]
where grouping_element can be:
()
|expression
|(expression [, ...])
|ROLLUP ({ expression | (expression [, ...]) } [, ...])
|CUBE ({ expression | (expression [, ...]) } [, ...])
|GROUPING SETS (grouping_element [, ...])

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 295

where with_query can be:
with_query_name [(column_name [, ...])] AS ({select | values | insert | update | delete})
where partition_clause can be:
PARTITION { (partition_name) | FOR (partition_value [, ...]) }
where nlssort_expression_clause can be:
NLSSORT (column_name, ' NLS_SORT = { SCHINESE_PINYIN_M | generic_m_ci } ')

SELECT INTO
Defines a new table based on a query result and inserts data obtained by query to
the new table.

[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 { * | {expression [[AS] output_name]} [, ...] }
 INTO [UNLOGGED] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition [, ...]]
 [WINDOW {window_name AS (window_definition)} [, ...]]
 [{ UNION | INTERSECT | EXCEPT | MINUS } [ALL | DISTINCT] select]
 [ORDER BY {expression [[ASC | DESC | USING operator] | nlssort_expression_clause] [NULLS { FIRST |
LAST }]} [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [{FOR { UPDATE | SHARE } [OF table_name [, ...]] [NOWAIT]} [...]];

SET
Modifies a run-time parameter.

SET [LOCAL | SESSION]
 { {config_parameter { { TO | = } { value | DEFAULT } | FROM CURRENT }}};
SET [SESSION | LOCAL] TIME ZONE { timezone | LOCAL | DEFAULT };
SET [SESSION | LOCAL] NAMES encoding_name;
SET [SESSION | LOCAL]
 {CURRENT_SCHEMA { TO | = } { schema | DEFAULT }
 | SCHEMA 'schema'};
SET [SESSION | LOCAL] XML OPTION { DOCUMENT | CONTENT };

SET CONSTRAINTS
Sets a constraint for checking the current transaction.

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE };

SET ROLE
Sets the current user identifier of the current session.

SET [SESSION | LOCAL] ROLE role_name PASSWORD 'password';
RESET ROLE;

SET SESSION AUTHORIZATION
Sets the session user identifier and the current user identifier of the current SQL
session to a specified user.

SET [SESSION | LOCAL] SESSION AUTHORIZATION role_name PASSWORD 'password';
{SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT
 | RESET SESSION AUTHORIZATION};

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 296

SET TRANSACTION
Sets constraints for checking the current transaction.

{SET [LOCAL] TRANSACTION|SET SESSION CHARACTERISTICS AS TRANSACTION}
 { ISOLATION LEVEL { READ COMMITTED | READ UNCOMMITTED }
 | { READ WRITE | READ ONLY | SERIALIZABLE | REPEATABLE READ }
 } [, ...]
SET TRANSACTION SNAPSHOT snapshot_id;

SHOW
Sows the current value of a run-time parameter.

SHOW { configuration_parameter | CURRENT_SCHEMA | TIME ZONE | TRANSACTION ISOLATION LEVEL |
SESSION AUTHORIZATION | ALL };

START TRANSACTION
Starts a transaction. If the isolation level or read/write mode is specified, a new
transaction will have those characteristics. You can also specify them using SET
TRANSACTION.

START TRANSACTION
 [{ ISOLATION LEVEL { READ COMMITTED | READ UNCOMMITTED }
 | { READ WRITE | READ ONLY | SERIALIZABLE | REPEATABLE READ }
 } [, ...]];

TRUNCATE
Quickly removes all rows from a database table.

TRUNCATE [TABLE] [ONLY] {table_name [*]} [, ...]
 [CONTINUE IDENTITY] [CASCADE | RESTRICT];
ALTER TABLE [IF EXISTS] { [ONLY] table_name | table_name * | ONLY (table_name) }
 TRUNCATE PARTITION { partition_name | FOR (partition_value [, ...]) } ;

UPDATE
Updates data in a table. Changes the values of the specified columns in all rows
that satisfy the condition. The WHERE clause clarifies conditions. The SET clause
specifies the columns to be modified and columns that not specified in the SET
clause retain their previous values.

UPDATE [/*+ plan_hint */] [ONLY] table_name [*] [[AS] alias]
 SET {column_name = { expression | DEFAULT } |
 (column_name [, ...]) = {({ expression | DEFAULT } [, ...]) |sub_query }
 }[, ...]
 [FROM from_list] [WHERE condition]
 [RETURNING {* | {output_expression [[AS] output_name]} [, ...] }];

VACUUM
Recycles storage space occupied by rows that have been deleted from a table or
B-Tree index. In normal database operation, rows that have been deleted are not
physically removed from their table; instead, they remain present until a VACUUM
is done. Therefore, it is necessary to do VACUUM periodically, especially on
frequently-updated tables.

VACUUM [({ FULL | FREEZE | VERBOSE | {ANALYZE | ANALYSE }} [,...])]
 [table_name [(column_name [, ...])]] [PARTITION (partition_name)];

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 297

VACUUM [FULL [COMPACT]] [FREEZE] [VERBOSE] [table_name] [PARTITION (partition_name)];
VACUUM [FULL] [FREEZE] [VERBOSE] { ANALYZE | ANALYSE } [VERBOSE]
 [table_name [(column_name [, ...])]] [PARTITION (partition_name)];
VACUUM DELTAMERGE [table_name];
VACUUM HDFSDIRECTORY [table_name];

VALUES
Computes a row or a set of rows based on given values. It is most commonly used
to generate a constant table within a large statement.

VALUES {(expression [, ...])} [, ...]
 [ORDER BY {sort_expression [ASC | DESC | USING operator]} [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY];

openGauss
Tutoria 11 Appendix: SQL Syntax

Issue 01 (2022-03-31) Copyright © Huawei Technologies Co., Ltd. 298

	Contents
	1 Understanding openGauss
	1.1 What Is openGauss?
	1.2 Software Architecture

	2 Installation and Login
	2.1 Obtaining and Verifying an Installation Package
	2.2 Preparing the Software and Hardware Installation Environment
	2.3 Installation on a Single Node
	2.4 Installation of One Primary and One Standby Nodes
	2.5 gsql Connection and Usage

	3 Basic Concepts
	4 Syntax
	5 Data Types
	6 Simple Data Management
	6.1 Creating a Database
	6.2 Creating a Table
	6.3 INSERT INTO Statement
	6.4 UPDATE Statement
	6.5 DELETE Statement
	6.6 Viewing Objects
	6.7 SELECT Statement
	6.8 Operators
	6.9 Expressions
	6.10 WHERE Clause
	6.11 ORDER BY Clause
	6.12 DISTINCT
	6.13 GROUP BY Clause
	6.14 HAVING Clause
	6.15 Date/Time Functions and Operators
	6.16 Mode Matching Operators
	6.17 Aggregate Functions

	7 Advanced Data Management
	7.1 Constraints
	7.2 JOIN
	7.3 NULL
	7.4 UNION Clause
	7.5 Aliases
	7.6 Indexes
	7.7 Batch Processing Mode
	7.8 Views
	7.9 SCHEMA
	7.10 ALTER TABLE Statement
	7.11 TRUNCATE TABLE Statement
	7.12 Transactions
	7.13 Cursors
	7.14 Partitioned Tables
	7.15 Locks
	7.16 Anonymous Blocks
	7.17 Triggers
	7.18 Stored Procedures
	7.19 Materialized Views
	7.20 Subqueries
	7.21 Permissions
	7.22 Functions

	8 Advanced Features
	8.1 Index Recommendation
	8.2 DB4AI
	8.3 Column Store
	8.4 LLVM
	8.5 Ustore
	8.6 MOT
	8.7 Fully-encrypted Database
	8.8 DCF
	8.9 SMP

	9 Connecting to a Database
	9.1 C and C++
	9.1.1 ODBC
	9.1.2 libpq

	9.2 Java
	9.3 Python

	10 Obtaining openGauss Resources
	11 Appendix: SQL Syntax

