openGauss
2.1.0

Feature Description

Issue 01
Date 2021-09-30

V.

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2021. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base
Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

openGauss
Feature Description Contents

Contents

T High PerformMancCe...... e iiceeiceectnniceenescesseeseesnssssesssesssssssssssassssssasssssssssssasssssassssssassnes 1
T.T CBO OPEiMUZET ettt st s ettt e s e st e st et es st s st s sesassesassenas 1
T2 LVl ettt sttt s b ettt s £t e b AR A At ARt £t A ettt A b et st et tesae st ens 2
1.3 VECEOIZEA ENGINE.....oiiiririiireieeee ettt st ess st s e sk s st s st st saeens s snssnsnsees 3
1.4 Hybrid ROW-COLUMN STOME......ooiririeirieeieireisesiee ettt ses st sss st sss s s s s s ss st esssssssssssssssensssssssssssssssnsansns 4
1.5 AQPLIVE COMPIESSION.....cuieeeieriieieisisiesissie s sss s s ssssssssssssss s st esssssesssssssasssssesssssessessesssssssssssssnsessenssssnssnssnsanes 6
1.6 SQL DY PASS... ittt sttt eastae et et s eb et b e e At e bbbttt 7
1.7 Kunpeng NUMA Architecture OptimiZation........c.ccceieerieecieecieeeieeetesetseststesstess s sessssssssessssssssssssssssssssesanees 8
1.8 High ConcurrenCy Of TAr@ad POOLS.........covvirieeeiseieeree sttt sttt ssss st sssssssssssssssanssssnsns 9
1.9 SMP fOr Parallel EXECULION. ...ttt ettt se et es et s et e bbb s 9
2 High AVAILADILIEY (HA) e oeeeeeeeeeneeeeeeseneeesessessesssssnssssssssssssssssssssssssesssssssssssssssssssssssssass 11
2.7 PrIMAIY/STANADY ...ttt s s s Rt seen 11
2.2 LOGICAL REPLICALION ...ttt sttt st s s bbbt se s s s s s s bbbt st ssnssesansanen 13
2.3 0NliNE NOAE REPLACEIMENToeieieiriectteete sttt sttt s bbb s s s s s bbb s s s saessesanes 13
2.4 LOGICAL BACKUP. ..o ettt ettt et et se e e s bas s et eees 14
2.5 PRYSICAl BACKUP.....ceie ittt s st se s st e s s s s s s st ensesssssnenns 15
2.6 AULOMALtiC JOD RELIY UPON FQILUIE.......ceeeeceeeeeeeer ittt sttt st nsessss s saen 16
2.7 UIIMATE RTO e ieieeeeeiereireeeeetseise ettt et e ca e e es s cs st s s ee bbbttt 20
2.8 CaSCAAEA STANADY SEIVEN ...ttt ettt bbb st es s bt been 21
2.9 DElAYEA REPLAY ...ttt ess st st sas st s s st s st s s s e ss e s s s st ee s e s ansseassansensensas 22
2.10 Adding or Deleting @ StaNADY SEIVET ...ttt sss s st ssssssssssassssssssnens 23
3 MaINtAINADILITY.....eeoeeeeeeeeeeeccrtecectecececcecceeresee e e seesaeseesaesseesaessnesseesaessessaesaessnesaasanans 25
3.1 GrAY UPGIad ...ttt sttt as st s st s s s st e st se s e s e s saansnnsrnses 25
3.2 Workload Diagnosis REPOIt (WDR)......c.cueueriririrrerienseniensssssisssanes 26
3.3 SLOW SQL DIQQNOSIS....cooriirrirrieierieriisisisissisessesssesssssssssssssssssanss 29
3.4 SeSSioN PerformMance DIAgNOSIS. ..o riurireereerrieeereireiseessiss s essses s essesss s ssssssesssssssssesssssssssssassssesssassssessssasssessssnes 32
3.5 System KPI-Qided DiagNOSiS.......cecerurrureriurierieriurinsieisisseseesesstssessesssssssssssssssssesssssssssssssssssssssssssessssssasssssssssssssssssssssenssnssas 34
4 Database SECUKItY......ccuivirinereiiierenenennneennsssessasssssssassssessssssnsessssssssssssssosssssssssssoses 36
4.1 ACCESS CONLTIOL MOAEL....oueeeieeeiec sttt bbbt bbb s s s s e s b st nee 36
4.2 Separation of Control and ACCESS PeIMMISSIONS........cc.ccieirieirireeieeieeiste sttt essssssessssessss s s sssssssssassessssesans 37
4.3 Database ENCryption AULNENTICATION. ..ottt sttt sns s ssesansanen 38
4.4 Data ENCryption @nNd SEOIAQE.......oiierieeiririeieistesisseseissss st sssssssssssss s ssssssssssssssssssssssssssssssessssssssssssasssssassasens 39

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. i

openGauss

Feature Description Contents
4.5 DAtaDase AUAIT. ...ttt ts et ss st s b e et 40
4.6 Network COMMUNICAtION SECUTIEY ..ottt ettt easess st ea st s s sesesanen 41
4.7 RESOUITE LADEL....ueeeeee ettt e s e eeb st saes 42
4.8 UNIFIEA AUAIT. ..ottt st e et sttt et 43
4.9 DYNAMIC DAt MASKING....cu ittt ettt ettt ssses sttt bbbt st seas st e sensees 46
4.10 ROW-LEVEL ACCESS CONTIOL..cuuuiuieriereiuiereeeieeeesetseeseeese e ssseese e es s es s es s bsse s bbb st bbb eseeen 49
4.17 PasswWord Strength VerifiCatiON. ...ttt st ss st sss s ssssssenes 50
4.12 Equality Query in a Fully-encrypted Database..........ccririnirenieieiseireireiseie ettt sessesses s sssssens 52
4.13 Ledger Database MECNANISM.. ...ttt e bbbt sss s s s s sa s b s st sssssssassansnsnsnns 55
5 Enterprise-Level FEAtUIes........ e eeceecececceececceccseeeceecneesaeessesssssssnsensessesssesssnsssanans 57
5.1 Support for FUNCtions and StOre€d ProCEAUIES...........ocieeeeeeeeeeeinieiesise ettt sssssssssss st ssss s ssessssanes 57
5.2 SQL HINTS ittt sttt sttt sttt e s s s b bbbt 58
5.3 FULL-TEXE INA@XING .ttt ettt et sassresas 59
5.4 Copy INterface for Error TOLEIANCE. ...ttt es st bbbt st sssas s bbb ss s s s sas s s sssneas 60
5.5 PAITITIONING ettt ettt e ARt ettt bttt 61
5.6 Support for Advanced ANalysiS FUNCLIONS. ...ttt es et ess s sssses 62
5.7 MALEITALIZEA VIBW.....oneeeie ettt e e e b 63
5.8 HYPEILOGLOG. ...ttt ettt ettt sttt sttt bbbttt ettt bbbt et aeae 64
5.9 Creating @n INAEX ONLINE.... ..ttt sttt s sttt bbb ses et s et sensesntan 65
5.70 AULONOMOUS TraNSACHION.cuieieeeeeieicireiretretseistietse ettt seebsese et bbb st seb e st seb et bbb ses et bnetae 66
5.17 GlODAl TEMPOTANY TADLE......oeiereeeeeieieerre ettt st ss s st s s snssssssssssnsensnen 67
5.12 PseudOCOlUMN ROWNUM.....coiuiiirieieieieireiseistisesese sttt sttt s st cs sttt st es st s sessnene 68
5.13 Stored ProCedUre DEBUGQING.....ccoiieieeieeieriririsiesissiesee s ssssssss s ssessssnsassassassansanes 69
6 Application Development INterfaces.........erieceeriereenineeceereeceeseeceessesseessesseesassnes 71
6.7 SEANAAIA SQL.eeee ettt ettt ettt ettt ettt et st sttt ettt s sttt sttt st ettt sttt satasasasasasasasasasssesssans 71
6.2 Standard DevelopmMENt INTEITACES. ..ottt s st sss s s sttt sassassasssssnsenes 72
6.3 POStgreSQL APl COMPAtIDILITY....cuorueerereiireieie ettt ettt 72
LY o I T V7 OSSOSO 73
7 Al Capabiliti@s......ueccueeeeeeeeeceeeectereeceereeceereeseesaeeseesseeseessesseessssssessesssessesssessesssessessasssassnans 76
7.1 Predictor: Al QUErY TiMeE FOMECASTING.....cccoevririritreeeieesiriesie st sessssssssssssssss st sesssssssassssssssssssssssssssssssssssssassesssnenns 76
7.2 X-Tuner: Parameter Optimization and DIiagnOSiS........ccceuvruerurireirsirsenseriensnssssesses 78
7.3 SQLAIAG: SIOW SQL DISCOVEIY....cuiuieieriiierieeisisireiseiseestaseasessassssssssessssssssssessessassssssssssssesssssssssassssssssesssssssssssssssssssnssseses 79
7.4 Anomaly-detection: Database Indicator Collection, Forecasting, and Exception Monitoring................... 80
7.5 Index-advisor: INndeX RECOMMENAATION........ociriiieireiseeeieieeti st es et ss sttt esees st ssesies 82
7.6 DeepSQL: Al AlGOrithm N the LiDIary...... ettt sttt esseaseas 83

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. iii

openGauss

Feature Description 1 High Performance

High Performance

1.1 CBO Optimizer

1.2 LLVM

1.3 Vectorized Engine

1.4 Hybrid Row-Column Store

1.5 Adaptive Compression

1.6 SQL by pass

1.7 Kunpeng NUMA Architecture Optimization
1.8 High Concurrency of Thread Pools

1.9 SMP for Parallel Execution

1.1 CBO Optimizer

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.0.0.

The openGauss optimizer is cost-based optimization (CBO).

The openGauss CBO optimizer can select the most efficient execution plan among
multiple plans based on the cost to meet customer service requirements to the
maximum extent.

By using CBO, the database calculates the number of tuples and the execution
cost for each step under each execution plan based on the number of table tuples,
column width, null record ratio, and characteristic values, such as distinct, MCV,

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 1

openGauss
Feature Description 1 High Performance

and HB values, and certain cost calculation methods. The database then selects
the execution plan that takes the lowest cost for the overall execution or for the
return of the first tuple.

Enhancements

None.

Constraints

None.

Dependencies

None.

1.2 LLVM

Availability
This feature is available since openGauss 1.0.0.

Introduction
openGauss provides the Low Level Virtual Machine (LLVM) technology to query
dynamic compilation execution.

Benefits
The requery performance is greatly improved by dynamically building and
executing queries.

Description
Based on the query execution plan tree, with the library functions provided by the
LLVM, openGauss moves the process of determining the actual execution path
from the executor phase to the execution initialization phase. In this way,
problems such as function calling, logic condition branch determination, and a
large amount of data reading that are related to the original query execution are
avoided, to improve the query performance.

Enhancements
None.

Constraints
None.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 2

openGauss
Feature Description 1 High Performance

Dependencies

It depends on the LLVM open-source component. Currently, the open-source
version 10.0.0 is used.

1.3 Vectorized Engine

Availability

This feature is available since openGauss 1.0.0.

Introduction

The vectorized execution engine, provided by openGauss, is usually used in OLAP
data warehouse systems because analytical systems are usually data-intensive and
access most data in a table in a sequential manner, perform calculation, and
finally output a calculation result to an end user.

Benefits

Batch calculation greatly improves the performance of complex query.

Description

The traditional database query execution uses the tuple-based pipeline execution
mode. In most time, the CPU is not used to actually process data, but to traverse
the query operation tree. As a result, the effective utilization of the CPU is not
high. This also results in low instruction cache performance and frequent jumps.
Worse still, this approach does not take advantage of the new capabilities of the
new hardware to speed up the execution of queries. In the execution engine,
another solution is to change a tuple to a column at a time. This is also the basis
of our vectorized execution engine.

The vectorized engine is bound to the column-store technology, because data of
each column is stored together, and it may be considered that the data is stored in
an array manner. Based on such a feature, when a same operation needs to be
performed on the column data, calculation of each value of the data block may be
efficiently completed by using a cycle.

The advantages of the vectorized execution engine are as follows:

e This reduces inter-node scheduling and improves CPU usage.

e Because the same type of data is put together, it is easier to leverage the new
optimization features of hardware and compilation.

Enhancements

None.

Constraints

None.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 3

openGauss
Feature Description

1 High Performance

Dependencies

It depends on column store.

1.4 Hybrid Row-Column Store

Availability

Introduction

This feature is available since openGauss 1.0.0.

openGauss supports both row-store and column-store models. Choose a row-store

or column-store table as needed.

Column-store is recommended if a table contains many columns (called a wide
table) but its query involves only a few columns. Figure 1-1 shows the column-
store model. Row store is recommended if a table contains only a few columns

and a query involves most of the fields.

Figure 1-1 Column-store

Data access layer

Small batch _
data import - ATy Cugry
fInsert S

T glete | +—— 1
: Incremental \\ E Cl cache :
| row store \\xLoading manag\ement |
' Il *® '
| merge o N o |
| V4 , |
I — I
I I
| Data compression Data decompression I
I I
| — e |
| AN |
| @ () |
| \\\ /// |
I I
I I
| , CalumnCaolumn |
| U hdindhda Cumztrﬁﬁzmn Position C 0 |

I
: izl L |
| 1 10430 FLE |
| izl izl |
| o2 15435 FLE |
| izl izl |

|
| cu || cu |
| 01 ‘aa'ca L4 |

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 4

openGauss
Feature Description

1 High Performance

Benefits

In a wide table containing a huge amount of data, a query usually only includes
certain columns. In this case, the query performance of the row-store engine is
poor. For example, a single table containing the data of a meteorological agency
has 200 to 800 columns. Among these columns, only 10 are frequently accessed.
In this case, a vectorized execution and column-store engine can significantly
improve performance by saving storage space.

Description

Tables are categorized into row-store and column-store tables. Each storage
model applies to specific scenarios. Select an appropriate model when creating a
table.

Enhancements

Row-store table

Row-store tables are created by default. Data is stored by row. Row-store
supports adding, deleting, modifying, and querying data of a complete row.
Therefore, this storage model applies to scenarios where data needs to be
updated frequently.

Column-store table

Data is stored by column. The I/O of data query in a single column is small,
and column-store tables occupy less storage space than row-store tables. This
storage model applies to scenarios where data is inserted in batches, less
updated, and queried for statistical analysis. The performance of single point
query and single record insertion in a column-store table is poor.

Selecting a storage model
- Update frequency

If data is frequently updated, use a row-store table.
- Data insertion frequency

If a small amount of data is frequently inserted each time, use a row-
store table. If a large amount of data is inserted at a time, use a column-
store table.

- Number of columns
If a table is to contain many columns, use a column-store table.
- Number of columns to be queried

If only a small number of columns (less than 50% of the total) is queried
each time, use a column-store table.

- Compression ratio

The compression ratio of a column-store table is higher than that of a
row-store table. High compression ratio consumes more CPU resources.

None.

Constraints

None.

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 5

openGauss

Feature Description 1 High Performance

Dependencies

None.

1.5 Adaptive Compression

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.0.0.

Data compression is the major technology used in current databases. Various
compression algorithms are used for different data types. If pieces of data of the
same type have different characteristics, their compression algorithms and results
will also be different. Adaptive compression chooses the suitable compression
algorithm for data based on the data type and characteristics, achieving high
performance in compression ratio, import, and query.

Importing and frequently querying a huge amount of data are the main
application scenarios. When you import data, adaptive compression greatly
reduces the data volume, increases 1/O operation efficiency several times, and
clusters data before storage, achieving fast data import. In this way, only a small
number of /O operations is required and data is quickly decompressed in a query.
Data can be quickly retrieved and the query result is quickly returned.

Currently, the database has implemented various compression algorithms on
column store, including RLE, DELTA, BYTEPACK/BITPACK, LZ4, ZLIB, and LOCAL
DICTIONARY. The following table lists data types and the compression algorithms
suitable for them.

- RLE | DELT | BITPACK/ |LzZ4 |ZLIB LOCAL
A BYTEPACK DICTION
ARY

Smallint/Int/Bigint/Oid | v v v v v -
Decimal/Real/Double
Money/Time/Date/
Timestamp

Tinterval/Interval/Time | - - - - v -
with time zone/

Numeric/Char/Varchar/ | ¥ v v v v v
Text/Nvarchar2

and other supported
data types

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 6

openGauss

Feature Description 1 High Performance

Enhancements

Constraints

The compression level of compression algorithms can be adjusted.

None

Dependencies

It depends on LZ4 or ZLIB.

1.6 SQL by pass

Availability
This feature is available since openGauss 1.0.0.

Introduction
Query performance is improved by customizing an execution scheme for typical
queries in the TP scenario.

Benefits
The TP query performance is improved.

Description
In a typical OLTP scenario, simple queries account for a large proportion. This type
of queries involves only single tables and simple expressions. To accelerate such
query, the SQL bypass framework is proposed. After simple mode judgment is
performed on such query at the parse layer, the query enters a special execution
path and skips the classic execution framework, including operator initialization
and execution, expression, and projection. Instead, it directly rewrites a set of
simple execution paths and directly invokes storage interfaces, greatly accelerating
the execution of simple queries.

Enhancements
None.

Constraints
None.

Dependencies
None.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 7

openGauss
Feature Description 1 High Performance

1.7 Kunpeng NUMA Architecture Optimization

Availability
This feature is available since openGauss 1.0.0.
Introduction

Kunpeng NUMA architecture optimization mainly focuses on Kunpeng processor

architecture features and ARMv8 instruction set, and optimizes the system from

multiple layers, including OS, software architecture, lock concurrency, logs, atomic
operations, and cache access. This greatly improves the openGauss performance
on the Kunpeng platform.

Benefits

Transactions per minute (TPM) is a key performance indicator of the database

competitiveness. Under the same hardware costs, a higher database performance

means the database can process more services, thereby reducing the usage cost of
customers.
Description

e openGauss optimizes the Kunpeng NUMA architecture based on the
architecture characteristics. This reduces cross-core memory access latency
and maximizes multi-core Kunpeng computing capabilities. The key
technologies include redo log batch insertion, NUMA distribution of hotspot
data, and CLog partitions, greatly improving the TP system performance.

e Based on the ARMv8.1 architecture used by the Kunpeng chip, openGauss
uses the LSE instruction set to implement efficient atomic operations,
effectively improving the CPU usage, multi-thread synchronization
performance, and Xlog write performance.

e Based on the wider L3 cache line provided by the Kunpeng chip, openGauss
optimizes hotspot data access, effectively improving the cache access hit ratio,
reducing the cache consistency maintenance overhead, and greatly improving
the overall data access performance of the system.

e Kunpeng 920, 2P server (64 cores x 2, memory: 768 GB), 10 GE network, 1/O:
4 NVMe PCle SSDs, TPC-C: 1000 warehouses, performance: 1,500,000 tpmC.

Enhancements

e Batch redo log insertion and CLog partition are supported, improving the
database performance on the Kunpeng platform.

e Efficient atomic operations using the LSE instruction set are supported,
improving multi-thread synchronization performance.

Constraints

None

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 8

openGauss
Feature Description 1 High Performance

Dependencies

None

1.8 High Concurrency of Thread Pools

Availability
This feature is available since openGauss 1.0.0.
Introduction
The thread pooling technology is used to support stable running of databases at
high concurrency.
Benefits
The overall system throughput is stable in case of a large number of concurrent
requests.
Description
The overall design idea of the thread pool technology is to pool thread resources
and reuse them among different connections. After the system is started, a fixed
number of working threads are started based on the current number of cores or
user configuration. A working thread serves one or more connection sessions. In
this way, the session and thread are decoupled. The number of worker threads is
fixed. Therefore, frequent thread switchover does not occur in case of high
concurrency. The database layer schedules and manages sessions.
Enhancements
This feature is available since openGauss 1.0.0.
In openGauss 1.1.0, thread pools can be dynamically scaled in or out.
Constraints
None
Dependencies
None

1.9 SMP for Parallel Execution

Availability

This feature is available since openGauss 1.1.0.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 9

openGauss

Feature Description 1 High Performance

Introduction

Benefits

Description

The Symmetric Multi-Processing (SMP) technology of openGauss uses the multi-
core CPU architecture of a computer to implement multi-thread parallel
computing, fully using CPU resources to improve query performance.

Fully utilizes the system multi-core capability to improve requery performance.

In complex query scenarios, a single query takes long time and the system
concurrency is low. Therefore, the SMP technology is used to implement operator-
level parallel execution, which effectively reduces the query time and improves the
query performance and resource utilization. The overall implementation of the
SMP technology is as follows: For query operators that can be executed in parallel,
data is sliced, multiple working threads are started for computation, and then the
results are summarized and returned to the frontend. The data interaction
operator Stream is added to the SMP architecture to implement data interaction
between multiple working threads, ensuring the correctness and integrity of the

query.

Enhancements

Constraints

None.

e Index scanning cannot be executed in parallel.

e Mergeloin cannot be executed in parallel.

e WindowAgg order by cannot be executed in parallel.

e The cursor cannot be executed in parallel.

e Queries in stored procedures and functions cannot be executed in parallel.

e Subplans and initplans cannot be queried in parallel, and operators that
contain subqueries cannot be executed in parallel, either.

e Query statements that contain the median operation cannot be executed in
parallel.

e Queries with global temporary tables cannot be executed in parallel.
e Updating materialized views cannot be executed in parallel.

Dependencies

None.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 10

openGauss
Feature Description 2 High Availability (HA)

High Availability (HA)

2.1 Primary/Standby

2.2 Logical Replication

2.3 Online Node Replacement

2.4 Logical Backup

2.5 Physical Backup

2.6 Automatic Job Retry upon Failure

2.7 Ultimate RTO

2.8 Cascaded Standby Server

2.9 Delayed Replay

2.10 Adding or Deleting a Standby Server

2.1 Primary/Standby

Availability
This feature is available since openGauss 1.0.0.

Introduction
To ensure that a fault can be rectified, data needs to be written into multiple
copies. Multiple copies are configured for the primary and standby nodes, and logs
are used for data synchronization. In this way, openGauss has no data lost when a
node is faulty or the system restarts after a stop, meeting the ACID feature
requirements.

Benefits

Services can be switched to the standby node when the primary node is faulty.
Therefore, data is not lost and services can be quickly restored.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 11

openGauss
Feature Description 2 High Availability (HA)

Description

The primary/standby environment supports two modes: primary/standby/
secondary and one-primary-multiple-standby. In the primary/standby/secondary
mode, the standby node needs to redo logs and can be promoted to the primary.
However, the secondary node can only receive logs and cannot be promoted to
the primary. In the one-primary-multiple-standby mode, all standby nodes need to
redo logs and can be promoted to the primary. The primary/standby/secondary
mode is mainly used for the OLAP system, saving storage resources. The one-
primary-multiple-standby mode provides higher DR capabilities and is more
suitable for the OLTP system that processes a large number of transactions.

The switchover command can be used to trigger a switchover between the
primary and standby nodes. If the primary node is faulty, the failover command
can be used to promote the standby node to the primary.

In scenarios such as initial installation or backup and restoration, data on the
standby node needs to be rebuilt based on the primary node. In this case, the
build function is required to send the data and WALs of the primary node to the
standby node. When the primary node is faulty and joins again as a standby node,
the build function needs to be used to synchronize data and WALs with those of
the new primary node. In addition, in online capacity expansion scenarios, you
need to use build to synchronize metadata to instances on new nodes. Build
includes full build and incremental build. Full build depends on primary node data
for rebuild. The amount of data to be copied is large and the time required is long.
Incremental build copies only differential files. The amount of data to be copied is
small and the time required is short. Generally, the incremental build is preferred
for fault recovery. If the incremental build fails, the full build continues until the
fault is rectified.

To implement HA DR for all instances, in addition to the preceding primary/
standby multi-copy replication configured for DNs, openGauss also provides other
primary/standby DR capabilities, such as CM server (one primary and multiple
standbys) and ETCD (one primary and multiple standbys). In this way, instances
can be recovered as soon as possible without interrupting services, minimizing the
impact of hardware, software, and human errors on services and ensuring service
continuity.

Enhancements

None.

Constraints

None.

Dependencies

None.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 12

openGauss
Feature Description 2 High Availability (HA)

2.2 Logical Replication

Availability

This feature is available since openGauss 1.0.0.

Introduction

openGauss provides the logical decoding function to reversely parse physical logs
to logical logs. Logical replication tools such as DRS convert logical logs to SQL
statements and replay the SQL statements in the peer database. In this way, data
can be synchronized between heterogeneous databases. Currently, unidirectional
and bidirectional logical replication between the openGauss database and the
MySQL or Oracle database is supported.

Benefits
Logical replication is applicable to real-time database data migration, dual-
database active-active system, and rolling upgrades.

Description

DNs reversely parse physical logs to logical logs. Logical replication tools such as
DRS extract logical logs from DNs, convert the logs to SQL statements, and replay
the SQL statements in MySQL. Logical replication tools also extract logical logs
from a MySQL database, reversely parse the logs to SQL statements, and replay
the SQL statements in openGauss. In this way, data can be synchronized between
heterogeneous databases.

Enhancements

e openGauss 1.0.0 logic decoding supports the extraction of logs from full and
incremental logs.

e openGauss 1.1.0 supports logical decoding on a standby node.

Constraints

Column-store replication and DDL replication are not supported.

Dependencies

It depends on logical replication tools that decode logical logs.

2.3 Online Node Replacement

Availability

This feature is available since openGauss 1.0.0.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 13

openGauss
Feature Description 2 High Availability (HA)

Introduction

If a node in a database is unavailable or the instance status is abnormal due to a
hardware fault and the database is not locked, you can replace the node or rectify
the instance fault to restore the database. During the restoration, DML operations
are supported. DDL operations are supported in limited scenarios only.

Benefits

Currently, the scale of enterprise data is increasing, the number of nodes increases
sharply, and the probability of hardware damage increases accordingly. The
traditional offline node replacement mode cannot meet customer requirements
for uninterrupted services. During routine O&M, frequent service interruption will
bring great loss to customers. However, the current database products in the
industry cannot meet the requirements of physical node replacement in large-
scale data scenarios without service interruption. Services need to be interrupted,
or only some operations are allowed when services are not interrupted.
Description

If a node in a database is unavailable or the instance status is abnormal due to a
hardware fault, you can replace the node or rectify the instance fault to restore
the database. During the restoration, DML operations are supported. DDL
operations are supported in limited scenarios only.

Enhancements

None.

Constraints
Currently, online DDL operations are supported during node replacement.

e During node replacement, DML operations are supported and DDL operations
are supported in certain scenarios.

Dependencies

None.

2.4 Logical Backup

Availability

This feature is available since openGauss 1.0.0.

Introduction

Data in user tables in the database is backed up to a specified storage medium in
a general format.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 14

openGauss
Feature Description 2 High Availability (HA)

Benefits
Through logical backup, you can achieve the following purposes:

e Back up user data to a reliable storage medium to secure data.

e Support cross-version recovery and heterogeneous recovery using a general
data format.

e Archive cold data.
Description

openGauss provides the logical backup capability to back up data in user tables to
local disk files in text or CSV format and restore the data in homogeneous or
heterogeneous databases.

Enhancements

None.

Constraints

For details about the restrictions on logical backup, see "Server Tools > gs_dump"
in the Tool Reference.

Dependencies

None.

2.5 Physical Backup

Availability
This feature is available since openGauss 1.0.0.

Introduction
Data in the entire database is backed up to a specified storage medium in an
internal format.

Benefits

Through physical backup, you can achieve the following purposes:

e Back up data of the entire database to a reliable storage medium, improving
system reliability.

e Improve backup and restoration performance using an internal data format.
e Archive cold data.

The typical physical backup policy and application scenario are as follows:

e On Monday, perform a full backup of the database.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 15

openGauss
Feature Description 2 High Availability (HA)

e On Tuesday, perform an incremental backup based on the full backup on
Monday.

e On Wednesday, perform an incremental backup based on the incremental
backup on Tuesday.

e On Sunday, perform an incremental backup based on the incremental backup
on Saturday.

The preceding backup operations are executed every week.

Description

openGauss 1.1.0 provides the physical backup capability to back up data of the
entire database to local disk files, OBS objects, NBU objects, or EISOO objects in
the internal database format, and restore data of the entire database in a
homogeneous database. In addition to the preceding functions, it also provides
advanced functions such as compression, flow control, and resumable backup.

Physical backup is classified into full backup and incremental backup. The
difference is as follows: Full backup includes the full data of the database at the
backup time point. The time required for full backup is long (in direct proportion
to the total data volume of the database), and a complete database can be
restored. An incremental backup involves only incremental data modified after a
specified time point. It takes a short period of time (in direct proportion to the
incremental data volume and irrelevant to the total data volume). However, a
complete database can be restored only after the incremental backup and full
backup are performed.

Enhancements

Supports full backup and incremental backup simultaneously.

Constraints

For details about constraints on physical backup, see "Backup and Restoration >
Introduction to Roach > Constraints and Limitations" in the Administrator Guide.

Dependencies

None.

2.6 Automatic Job Retry upon Failure

Availability

This feature is available since openGauss 1.0.0.

Introduction

If an error occurs in batch processing jobs due to network exceptions or deadlocks,
failed jobs are automatically retried.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 16

openGauss
Feature Description

2 High Availability (HA)

Benefits

In common fault scenarios, such as network exception and deadlock, queries retry
automatically in case of failure to improve database usability.

Description

openGauss provides the job retry mechanism: gsql Retry.

Enhancements

The gsql retry mechanism uses a unique error code (SQL STATE) to identify
an error that requires a retry. The function of the client tool gsgl is enhanced.
The error code configuration file retry_errcodes.conf is used to configure the
list of errors that require a retry. The file is stored in the installation directory
at the same level as gsql. gsql provides the \set RETRY [number] command
to enable or disable the retry function. The number of retry times ranges from
5 to 10, and the default value is 5. When this function is enabled, gsql reads
the preceding configuration file. The error retry controller records the error
code list through the container. If an error occurs in the configuration file
after the function is enabled, the controller sends the cached query statement
to the server for retry until the query is successful or an error is reported
when the number of retry times exceeds the maximum.

None

Constraints

Functionality constraints:

Retrying increases execution success rate but does not guarantee success.
Error type constraints:

Only the error types in Table 2-1 are supported.

Table 2-1 Supported error types

Error Type Err | Remarks
or
Cod

CONNECTION_RESET_BY_PEER YYO | TCP communication error. Print
01 information: "Connection reset
by peer"

STREAM_CONNECTION_RESET B | YYO [TCP communication error. Print
Y_PEER 02 information: "Stream connection
reset by peer" (communication
between DNs)

LOCK_WAIT_TIMEOUT YYO | Lock wait timeout. Print
03 information: "Lock wait timeout"

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 17

openGauss
Feature Description

2 High Availability (HA)

Error Type Err | Remarks
or
Cod
e
CONNECTION_TIMED_OUT YYO | TCP communication error. Print
04 information: "Connection timed
out"
SET_QUERY_ERROR YYO | Failed to deliver the SET
05 command. Print information:
"Set query error"
OUT_OF_LOGICAL_MEMORY YYO | Failed to apply for memory. Print
06 | information: "Out of logical
memory"
SCTP_MEMORY_ALLOC YYO | SCTP communication error. Print
07 | information: "Memory allocate
error"
SCTP_NO_DATA_IN_BUFFER YYO | SCTP communication error. Print
08 information: "SCTP no data in
buffer"
SCTP_RELEASE_MEMORY_CLOSE | YYO | SCTP communication error. Print
09 | information: "Release memory
close"
SCTP_TCP_DISCONNECT YYO | SCTP and TCP communication
10 error. Print information: "SCTP,
TCP disconnect"
SCTP_DISCONNECT YYO | SCTP communication error. Print
11 information: "SCTP disconnect"
SCTP_REMOTE_CLOSE YYO | SCTP communication error. Print
12 | information: "Stream closed by
remote"
SCTP_WAIT_POLL_UNKNOW YYO | Waiting for an unknown poll.
13 Print information: "SCTP wait
poll unknow"
SNAPSHOT _INVALID YYO | Invalid snapshot. Print
14 information: "Snapshot invalid"
ERRCODE_CONNECTION_RECEIV | YYO | Failed to receive a connection.
E_WRONG 15 Print information: "Connection
receive wrong"
OUT_OF _MEMORY 532 | Out of memory. Print
00 | information: "Out of memory"

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 18

openGauss
Feature Description

2 High Availability (HA)

Dependencies

Error Type Err | Remarks
or
Cod
e
CONNECTION_EXCEPTION 080 | Failed to communicate with DNs
00 due to connection errors. Print
information: "Connection
exception”
ADMIN_SHUTDOWN 57P | System shutdown by the
01 administrator. Print information:
"Admin shutdown"
STREAM_REMOTE_CLOSE_SOCKE | XX0 | Remote socket disabled. Print
T 03 information: "Stream remote
close socket"
ERRCODE_STREAM_DUPLICATE_ | XX0 | Duplicate query. Print
QUERY_ID 09 | information: "Duplicate query id"
ERRCODE_STREAM_CONCURREN | YYO | Concurrent stream query and
T_UPDATE 16 update. Print information:
"Stream concurrent update"

Statement type constraints:

Support single-statement stored procedures, functions, and anonymous
blocks. Statements in transaction blocks are not supported.

Statement constraints of a stored procedure:

- If an error occurs during the execution of a stored procedure containing
EXCEPTION (including statement block execution and statement
execution in EXCEPTION), the stored procedure can be retried. If the error
is captured by EXCEPTION, the stored procedure cannot be retried.

- Advanced packages that use global variables are not supported.

- DBE_TASK is not supported.

- PKG_UTIL file operation is not supported.

Data import constraints:

- The COPY FROM STDIN statement is not supported.
- The gsql \copy from metacommand is not supported.

Data cannot be imported using JDBC CopyManager copyln.

Valid only if the gsql tool works normally and the error list is correctly configured.

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 19

openGauss

Feature Description 2 High Availability (HA)

2.7 Ultimate RTO

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.1.0.

e The database host can be quickly restored after being restarted.

e Logs can be synchronized between the primary and standby nodes to
accelerate playback on the standby node.

When the service load is heavy, the playback speed of the standby node cannot
catch up with that of the primary node. After the system runs for a long time, logs
are accumulated on the standby node. If a host is faulty, data restoration takes a
long time and the database is unavailable, which severely affects system
availability.

The ultimate recovery time object (RTO) is enabled to reduce the data recovery
time after a host fault occurs and improve availability.

After the ultimate RTO function is enabled, multi-level pipelines are established
for Xlog log playback to improve the concurrency and log playback speed.

Enhancements

Constraints

None

The ultimate RTO focuses only on whether the RTO of the standby node meets
the requirements. The ultimate RTO has the flow control effect. Therefore, you do
not need to enable the flow control function. This feature does not support the
read operation on the standby node. If you query the standby node, a core dump
may occur on the standby node. This feature does not apply to the primary/
standby/secondary scenario. In primary/standby/secondary deployment mode
(that is, replication_type is set to 0), the database cannot be started.

Dependencies

None

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 20

openGauss

Feature Description 2 High Availability (HA)

2.8 Cascaded Standby Server

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.1.0.

A cascaded standby server can be connected to a standby server based on the
one-primary-multiple-standby architecture.

The one-primary-multiple-standby architecture cannot support a flexible structure
in feature service scenarios. The multi-equipment room deployment cannot meet
requirements of the complete structure in the HA switchover scenario (three
instances in the primary and standby equipment rooms and two or three instances
in the secondary equipment room). If the number of standby servers increases, the
primary server may be overloaded. Queries that have low real-time requirements
can be implemented on cascaded standby servers. Therefore, the cascading
backup capability is required.

The primary server replicates logs to the standby server in synchronous or
asynchronous mode. The standby server replicates logs to the cascaded standby
server only in asynchronous mode.

In the current one-primary-multiple-standby architecture, the primary server uses
the WAL sender process (walsender) to replicate logs to the standby server. The
standby server uses the WAL receiver process (walreceiver) to receive and then
flushes logs to local disks. The standby server reads redo logs to complete data
replication between the primary and standby servers. There is a one-to-one
mapping between walsender and walreceiver on the primary and standby servers.
Logs are sent between the standby and cascaded standby servers in asynchronous
mode using walsender and walreceiver, reducing the streaming replication
pressure on the primary server.

Enhancements

Constraints

None

e A cascaded standby server can only replicate data from a standby server and
cannot directly replicate data from the primary server.

e A cascaded standby server does not support data build from a standby server.
Currently, data can be built only from the primary server. If the standby server
is fully built, the cascaded standby server needs to be fully built.

e The cascaded standby node is in asynchronous replication mode.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 21

openGauss

Feature Description 2 High Availability (HA)

e The cascaded standby server cannot be promoted.
e The cascaded standby server cannot be notified.

e Currently, the overall architecture of the primary-standby-cascaded standby
cluster cannot be queried. You need to find the standby server based on the
primary server and then find the cascaded standby server based on the
standby server.

e A cascaded standby server cannot own another cascaded standby server.
e When the ultimate RTO is enabled, no cascaded standby server is supported.

Dependencies

None

2.9 Delayed Replay

Availability
This feature is available since openGauss 2.0.0.

Introduction
The time for a standby node to replay can be delayed.

Benefits
By default, the standby server restores the Xlog records from the primary server as
soon as possible. This function allows you to delay the time for a standby node to
replay Xlog records. In this case, you can query a copy that records data before a
period of time, which helps correct errors such as misoperations.

Description
The GUC parameter recovery_min_apply_delay can be used to set the delay time
so that a standby server can replay Xlog records from the primary server after a
delay time.
Value range: an integer ranging from 0 to INT_MAX. The unit is ms.
Default value: 0 (no delay)

Enhancements
None.

Constraints

e The recovery_min_apply_delay parameter is invalid on the primary node. It
must be set on the standby node to be delayed.

e The delay time is calculated based on the timestamp of transaction commit
on the primary server and the current time on the standby server. Therefore,
ensure that the clocks of the primary and standby servers are the same.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 22

openGauss

Feature Description 2 High Availability (HA)

e Operations without transactions are not delayed.

e After the primary/standby switchover, if the original primary server needs to
be delayed, you need to manually set this parameter.

e When synchronous_commit is set to remote_apply, synchronous replication
is affected by the delay. Each commit message is returned only after the
replay on the standby server is complete.

e Using this feature also delays hot_standby_feedback, which may cause the
primary server to bloat, so be careful when using both.

e |f a DDL operation (such as DROP or TRUNCATE) that holds an
AccessExclusive lock is performed on the primary server, the query operation
on the operation object on the standby server will be returned only after the
lock is released during the delayed replay of the record on the standby server.

Dependencies

None.

2.10 Adding or Deleting a Standby Server

Availability

Introduction

Benefits

Description

This feature is available since openGauss 2.0.0.

Standby servers can be added and deleted.

If the read pressure of the primary server is high or you want to improve the
disaster recovery capability of the database, you need to add a standby server. If
some standby nodes in a cluster are faulty and cannot be recovered within a short
period of time, you can delete the faulty nodes to ensure that the cluster is
running properly.

openGauss can be scaled out from a single server or one primary and multiple
standbys to one primary and eight standbys. Cascaded standby servers can be
added. Standby nodes can be added when a faulty standby server exists in the
cluster. One primary and multiple standbys can be scaled in to a single server. A
faulty standby server can be deleted.

Standby nodes can be added or deleted online without affecting the primary
server.

Enhancements

None.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 23

openGauss

Feature Description

2 High Availability (HA)

Constraints

Dependencies

For adding a standby server:

Ensure that the openGauss image package exists on the primary server.

Ensure that the same users and user groups as those on the primary server
have been created on the new standby server.

Ensure that the mutual trust of user root and the database management user
has been established between the existing database nodes and the new
nodes.

Ensure that the XML file has been properly configured and information about
the standby server to be scaled has been added to the installed database
configuration file.

Ensure that only user root is authorized to run the scale-out command.

Do not run the gs_dropnode command on the primary server to delete other
standby nodes at the same time.

Ensure that the environment variables of the primary server have been
imported before the scale-out command is run.

Ensure that the operating system of the new standby server is the same as
that of the primary server.

Do not perform an primary/standby switchover or failover on other standby
nodes at the same time.

For deleting a standby server:

Delete the standby node only on the primary node.

Do not perform an primary/standby switchover or failover on other standby
nodes at the same time.

Do not run the gs_expansion command on the primary node for scale-out at
the same time.

Do not run the gs_dropnode command twice at the same time.

Before deletion, ensure that the database management user trust relationship
has been established between the primary and standby nodes.

Run this command as a database administrator.

Before running commands, run the source command to import environment
variables of the primary server.

None.

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 24

openGauss

Feature Description 3 Maintainability

3 Maintainability

3.1 Gray Upgrade

3.2 Workload Diagnosis Report (WDR)
3.3 Slow SQL Diagnosis

3.4 Session Performance Diagnosis

3.5 System KPI-aided Diagnosis

3.1 Gray Upgrade

Availability

Introduction

Benefits

Description

This feature is available since openGauss 2.0.0.

Gray upgrade supports full-service operations. All nodes can be upgraded at a
time.

Gray upgrade provides an online upgrade mode to ensure that all nodes are
upgraded without interrupting services.

Gray upgrade is an online upgrade mode that upgrades all nodes. If only the
binary files of the database need to be replaced during the gray upgrade, to
minimize the impact on services, the two sets of binary files exist on the same
node at the same time, and the soft connection switchover mode is used to switch
the process version (one intermittent disconnection within 10 seconds).

Enhancements

None

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 25

openGauss
Feature Description

3 Maintainability

Constraints

For details about the gray upgrade constraints, see "Before You Start > Upgrade
Impact and Constraints" in Upgrade Guide.

Dependencies

None

3.2 Workload Diagnosis Report (WDR)

Availability

This feature is available since openGauss 1.0.0.

Introduction

WDR provides database performance diagnosis reports based on the baseline
performance and incremental data that reflects performance changes.

Benefits

Description

WDR is the main method for diagnosing long-term performance problems.
Based on the performance baseline of a snapshot, performance analysis is
performed from multiple dimensions, helping DBAs understand the system
load, performance of each component, and performance bottlenecks.

Snapshots are also an important data source for self-diagnosis and self-
optimization suggestions on subsequent performance problems.

WDR generates a performance report between two different time points based on
the system performance snapshot data at these time points. The report is used to
diagnose database kernel performance faults.

You can use generate_wdr_report(...) to generate a performance report based on
two performance snapshots.

WDR depends on the following two components:

Snapshot: The performance snapshot can be configured to collect a certain
amount of performance data from the kernel at a specified interval and store
the data in the user tablespace. Any snapshot can be used as a performance
baseline for comparison with other snapshots.

WDR Reporter: This tool analyzes the overall system performance based on
two snapshots, calculates the changes of more specific performance indicators
between the two time points, and generates summarized and detailed
performance data. For details, see Table 3-1 and Table 3-2.

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 26

openGauss
Feature Description

3 Maintainability

Table 3-1 Summarized diagnosis report

Diagnosis Type

Description

Database Stat

Evaluates the load and 1I/O status of the current database.
Load and I/O are the most important indicators of the TP
system.

The statistics include the number of sessions connected to
the database, number of committed and rolled back
transactions, number of read disk blocks, number of disk
blocks found in the cache, number of rows returned,
captured, inserted, updated, and deleted through database
query, number of conflicts and deadlocks, usage of
temporary files, and 1/O read/write time.

Load Profile Evaluates the current system load from the time, 1/0,
transaction, and SQL dimensions.
The statistics include the job running elapse time, CPU
time, daily transaction quality, logical and physical read
volume, read and write I/O times and size, login and logout
times, SQL, transaction execution volume, and SQL P80 and
P95 response time.

Instance Evaluates the cache efficiency of the current system.

Efficiency The statistics include the database cache hit ratio.

Percentages

Events Evaluates the performance of key system kernel resources

and key events.

The statistics include the number of times that the key
events of the database kernel occur and the waiting time.

Wait Classes

Evaluates the performance of key events in the system.

The statistics include the release of the data kernel in the
main types of wait events, such as STATUS,
LWLOCK_EVENT, LOCK_EVENT, and 10_EVENT.

CPU Includes time release of the CPU in user mode, kernel
mode, I/O wait mode, or idle mode.
IO Profile Includes the number of database 1/O times, database 1/O

data volume, number of redo I/O times, and redo |/O
volume.

Memory Statistics

Includes maximum process memory, used process memory,
maximum shared memory, and used shared memory.

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 27

openGauss
Feature Description

3 Maintainability

Table 3-2 Detailed diagnosis report

Diagnosis Type

Description

Time Model

Evaluates the performance of the current system in the
time dimension.

The statistics include time consumed by the system in each
phase, including the kernel time, CPU time, execution time,
parsing time, compilation time, query rewriting time, plan
generation time, network time, and 1/O time.

SQL Statistics

Diagnoses SQL statement performance problems.

The statistics include normalized SQL performance
indicators in multiple dimensions: elapsed time, CPU time,
rows returned, tuple reads, executions, physical reads, and
logical reads. The indicators can be classified into execution
time, number of execution times, row activity, and cache
I/O.

Wait Events

Diagnoses performance of key system resources and key
time in detail.

The statistics include the performance of all key events in a
period of time, including the number of events and the
time consumed.

Cache IO Stats

Diagnoses the performance of user tables and indexes.

The statistics include read and write operations on all user
tables and indexes, and the cache hit ratio.

Utility status

Diagnoses the performance of backend jobs.

The statistics include the performance of backend
operations such as page operation and replication.

Object stats

Diagnoses the performance of database objects.

The statistics include user tables, tables on indexes, index
scan activities, as well as insert, update, and delete
activities, number of valid rows, and table maintenance
status.

Configuration
settings

Determines whether the configuration is changed.

It is a snapshot that contains all current configuration
parameters.

SQL detail

Displays information about unique query text.

Enhancements

None.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 28

openGauss

Feature Description 3 Maintainability

Constraints

e The WDR snapshot collects performance data of different databases. If there
are a large number of databases or tables in the database instance, it takes a
long time to create a WDR snapshot.

e If WDR snapshot is performed when a large number of DDL statements are
executed, WDR snapshot may fail.

e When the database is dropped, WDR snapshot may fail.

Dependencies

None.

3.3 Slow SQL Diagnosis

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.1.0. The following slow SQL views have
been discarded before reconstruction: dbe_perf.gs_slow_query_info,
dbe_perf.gs_slow_query_history, dbe_perf.global_slow_query_hisotry, and
dbe_perf.global_slow_query_info.

Slow SQL diagnosis provides necessary information for diagnosing slow SQL
statements, helping developers backtrack SQL statements whose execution time
exceeds the threshold and diagnose SQL performance bottlenecks.

Slow SQL provides detailed information required for slow SQL diagnosis. You can
diagnose performance problems of specific slow SQL statements offline without
reproducing the problem. The table-based and function-based APIs help users
collect statistics on slow SQL indicators and connect to third-party platforms.

Slow SQL diagnosis records information about all jobs whose execution time
exceeds the threshold log_min_duration_statement.

Slow SQL provides table-based and function-based query APIs. You can query the
execution plan, start time, end time, query statement, row activity, kernel time,
CPU time, execution time, parsing time, compilation time, query rewriting time,
plan generation time, network time, I/O time, network overhead, and lock
overhead. All information is anonymized.

Enhancements

Optimized slow SQL indicators, security (anonymization), execution plans, and
query interfaces.

Run the following command to check the execution information about the SQL statements in the database
instance:

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 29

openGauss

Feature Description 3 Maintainability

gsql> select * from dbe_perf.get_global_full_sql_by_timestamp(start_timestamp, end_timestamp);

For example:

openGauss=# select * from DBE_PERF.get_global_full_sql_by_timestamp('2020-12-01 09:25:22', '2020-12-31
23:54:41");

-[RECORD 1]--------

node_name | dn_6001_6002_6003
db_name | postgres
schema_name | "$user",public
origin_node | 1938253334
user_name | user_dj
application_name | gsql

client_addr |

client_port | -1

unique_query_id | 3671179229
debug_query_id | 72339069014839210

query | select name, setting from pg_settings where name in (?)
start_time | 2020-12-19 16:19:51.216818+08

finish_time | 2020-12-19 16:19:51.224513+08

slow_sql_threshold | 1800000000

transaction_id |0

thread_id | 139884662093568

session_id | 139884662093568

n_soft_parse |0

n_hard_parse | 1

query_plan | Datanode Name: dn_6001_6002_6003

| Function Scan on pg_show_all_settings a (cost=0.00..12.50 rows=5 width=64)
| Filter: (name = "***":text)

Run the following command to check the execution information about the slow SQL statements in the
database instance:

gsql> select * from dbe_perf.get_global_slow_sql_by_timestamp(start_timestamp, end_timestamp);
openGauss=# select * from DBE_PERF.get_global_slow_sql_by_timestamp('2020-12-01 09:25:22',
'2020-12-31 23:54:41");

-[RECORD 1] +
node_name | dn_6001_6002_6003
db_name | postgres
schema_name | "$user",public
origin_node | 1938253334
user_name | user_dj
application_name | gsql

client_addr |

client_port | -1

unique_query_id | 2165004317
debug_query_id | 72339069014839319

query | select * from DBE_PERF.get_global_slow_sql_by_timestamp(?, ?);
start_time | 2020-12-19 16:23:20.738491+08

finish_time | 2020-12-19 16:23:20.773714+08

slow_sql_threshold | 10000

transaction_id |0

thread_id | 139884662093568

session_id | 139884662093568

n_soft_parse |10

n_hard_parse | 8

query_plan | Datanode Name: dn_6001_6002_6003

| Result (cost=1.01..1.02 rows=1 width=0)

| InitPlan 1 (returns $0)

| -> Seq Scan on pgxc_node (cost=0.00..1.01 rows=1 width=64)

| Filter: (nodeis_active AND ((node_type = "**::"char") OR (node_type = "**'::"char")))

Check the execution information about the SQL statement on the current node.
gsql> select * from statement_history;

For example:

openGauss=# select * from statement_history;

-[RECORD 1]--------

+

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 30

openGauss
Feature Description

3 Maintainability

db_name | postgres
schema_name | "$user",public
origin_node | 1938253334
user_name | user_dj
application_name | gsql
client_addr |

client_port | -1

unique_query_id | 3671179229
debug_query_id | 72339069014839210

query | select name, setting from pg_settings where name in (?)

start_time | 2020-12-19 16:19:51.216818+08

finish_time | 2020-12-19 16:19:51.224513+08

slow_sql_threshold | 1800000000

transaction_id |0

thread_id | 139884662093568

session_id | 139884662093568

n_soft_parse |0

n_hard_parse [1

query_plan | Datanode Name: dn_6001_6002_6003
| Function Scan on pg_show_all_settings a (cost=0.00..12.50 rows=5 width=64)
| Filter: (name = "**::text)

Constraints
e The SQL tracing information is based on the normal execution logic. The

tracing information may inaccurate if SQL statements fail to be executed.
Restarting a node may cause data loss on the node.

If you exit a session immediately after SQL statements are executed, the
session data that is not updated to the system catalog may be lost.

The number of SQL statements to be collected is specified by a GUC
parameter. If the number of SQL statements exceeds the threshold, new SQL
statement execution information will not be collected.

The maximum number of bytes of lock event details collected by a single SQL
statement is specified by a GUC parameter. If the number of bytes exceeds
the threshold, new lock event details will not be collected.

The SQL statement information is updated in asynchronous mode. Therefore,
after a query statement is executed, the related view function result is slightly
delayed.

Certain indicator information (such as row activities, cache 1/O, and time
distribution) depends on the dbe_perf.statement view. If the number of
records in the view exceeds the preset size (depending on
GUC:instr_unique_sql_count), related indicators may not be collected.

Functions related to the statement_history table and the details column in the
view are in binary format. To parse the detailed information, use the
pg_catalog.statement_detail_decode(details, 'plaintext’, true) function.

The statement_history table can be queried only in the postgres database. The
data in other databases is empty.

The content of the statement_history table is controlled by
track_stmt_stat_level. The default value is 'OFF,LO". The first part of the
parameter indicates the full SQL statement, and the second part indicates the
slow SQL statement. Slow SQL statements are recorded in the
statement_history table only when the SQL statement execution time exceeds
the value of log_min_duration_statement.

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 31

openGauss

Feature Description 3 Maintainability

Dependencies

None.

3.4 Session Performance Diagnosis

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.0.0.

Session performance diagnosis targets session-level performance faults.

e Display the latest events that consume the most resources of user sessions.

e Check the wait events that occupy the most resource-consuming SQL
statements.

e Check the wait events that occupy the most resource-consuming sessions.
e Check information about the most resource-consuming users.
e Check the waiting relationship between blocked sessions.

The session performance diagnosis function diagnoses performance of all active
sessions in the system. As real-time collection of indicators of all active sessions
has a greater impact on user load, the session snapshot technology is used to
sample indicators of active sessions, and collect statistics on active sessions from
the sampling. The statistics reflect the basic information, status, and resources of
active sessions from the dimensions of client information, execution start time,
execution end time, SQL text, wait events, and current database objects. The
active session information collected based on the probability can help users
diagnose which sessions consume more CPU and memory resources, which
database objects are hot objects, and which SQL statements consume more key
event resources in the system. In this way, users can locate faulty sessions, SQL
statements, and database designs.

Session sampling data is classified into two levels, as shown in Figure 3-1.

1. The first level is real-time information stored in the memory. The active
session information in the latest several minutes is displayed, which has the
highest precision.

2. The second level is the persistent historical information stored in disk files. It
displays the historical active session information in a long period of time and
is sampled from the memory data. This level is suitable for long-run statistics
and analysis.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 32

openGauss
Feature Description 3 Maintainability

Figure 3-1 Session performance diagnosis principle

session stat
info

sample_id
sample_time

Some application scenarios are as follows:

1. Check the blocking relationship between sessions.
select sessionid, block_sessionid from pg_thread_wait_status;

2. Sample information about blocked sessions.
select sessionid, block_sessionid from DBE_PERF.local_active_session;

3. Display the final blocked session.

select sessionid, block_sessionid, final_block_sessionid from DBE_PERF.local_active_session;

4. Check the wait event that consumes the most resources.
SELECT s.type, s.event, t.count
FROM dbe_perf.wait_events s, (
SELECT event, COUNT(*)
FROM dbe_perf.local_active_session
WHERE sample_time > now() - 5/ (24 * 60)
GROUP BY event)t WHERE s.event = t.event ORDER BY count DESC;

5. Check the events that consume the most session resources in the last five

minutes.

SELECT sessionid, start_time, event, count

FROM (

SELECT sessionid, start_time, event, COUNT (*)

FROM dbe_perf.local_active_session

WHERE sample_time > now() - 5/ (24 * 60)

GROUP BY sessionid, start_time, event) as t ORDER BY SUM(t.count) OVER (PARTITION BY t.
sessionid, start_time)DESC, t.event;

6. Check the events that consume the most resources in the last five minutes.
SELECT query_id, event, count
FROM (
SELECT query_id, event, COUNT (*)
FROM dbe_perf.local_active_session
WHERE sample_time > now() - 5/ (24 * 60)
GROUP BY query_id, event) t ORDER BY SUM(t.count) OVER (PARTITION BY t.query_id) DESC,
t.event DESG;

Enhancements
None.
Constraints
None.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 33

openGauss
Feature Description

3 Maintainability

Dependencies

None.

3.5 System KPIl-aided Diagnosis

Availability

This feature is available since openGauss 1.0.0.

Introduction

KPIs are views of key performance indicators for kernel components or the entire
system. Based on KPIs, users can learn about the real-time and historical running
status of the system.

Benefits

Description

Summarized system load diagnosis

Precise alarms for system load exceptions (overload, stall, and SLA
exceptions) and precise system load profile

Summarized system time model diagnosis

Instance-level and query-level time model segmentation, diagnosing the root
causes of instance and query performance problems

Query performance diagnosis

Database-level query summary, including top SQL, SQL CPU usage, 1/O
consumption, execution plan, and excessive hard parsing

Diagnosis of disk 1/O, index, and buffer performance problems
Diagnosis of connection and thread pool problems

Diagnosis of checkpoint and redo (RTO) performance problems
Diagnosis of system 1/O, LWLock, and wait performance problems

Diagnosis of over 60 modules and over 240 key operation performance
problems

Function-level performance monitoring and diagnosis (by GSTRACE)
Tracing of over 50 functions at the storage and execution layers

openGauss provides KPIs of 11 categories and 26 sub-categories, covering
instances, files, objects, workload, communication, sessions, threads, cache 1/O,
locks, wait events, and clusters.

Figure 3-2 shows the distribution of kernel KPIs.

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 34

openGauss
Feature Description

3 Maintainability

Figure 3-2 Distribution of kernel KPIs

System Deployment/O&M Management

OM Controller OM Agent O&M
Database Instance Management
CM Controller CM Server CM Agent
HA GaussDB Kernel
[Query Compittion | _ _
DM Failover
| Query Re-write |
| query Dpumlzatmn | - -
| Cuery Execution |
Instrumentation:Pg5tat,
| Communication | Percentile, Snapshot
CMS Failover
Controller File

Upgrade

Migration

ETCD Failover
Backup
Recovery
Enhancements
None
Constraints
None
Dependencies
None

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 35

openGauss
Feature Description 4 Database Security

Database Security

4.1 Access Control Model

4.2 Separation of Control and Access Permissions
4.3 Database Encryption Authentication

4.4 Data Encryption and Storage

4.5 Database Audit

4.6 Network Communication Security

4.7 Resource Label

4.8 Unified Audit

4.9 Dynamic Data Masking

4.10 Row-Level Access Control

4.11 Password Strength Verification

4.12 Equality Query in a Fully-encrypted Database
4.13 Ledger Database Mechanism

4.1 Access Control Model

Availability
This feature is available since openGauss 1.1.0.
Introduction
The access control model can be used to manage users' access permissions and
grant them the minimum permissions required for completing a task.
Benefits

You can create users and grant permissions to them as needed to minimize risks.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 36

openGauss
Feature Description 4 Database Security

Description

The database provides a role-based access control model and an access control
model based on the separation of duties. In the role-based access control model,
database roles are classified into system administrator, monitoring administrator,
O&M administrator, security policy administrator, and common user. The security
administrator creates roles or user groups and grant permissions to roles. The
monitoring administrator views the monitoring views or functions in dbe_perf
mode. The O&M administrator uses the Roach tool to back up and restore the
database. The security policy administrator creates resource labels, anonymization
policies, and unified audit policies. A user who is assigned a role has the role's
permissions.

In the access control model based on the separation of duties, database roles are
classified into system administrator, security administrator, audit administrator,
monitoring administrator, O&M administrator, security policy administrator, and
common user. The security administrator creates users, the system administrator
grants permissions to users, and the audit administrator audits all user behavior.

By default, the role-based access control model is used. To switch to another
mode, set the GUC parameter enableSeparationOfDuty to on.

Enhancements

None.

Constraints

The permissions of the system administrator are controlled by the GUC parameter
enableSeparationOfDuty.

The database needs to be restarted when the separation of duties is enabled,
disabled or switched. In addition, improper user permissions in the new model
cannot be automatically identified. The database administrator needs to manually
identify and rectify the fault.

Dependencies

None.

4.2 Separation of Control and Access Permissions

Availability

This feature is available since openGauss 1.1.0.

Introduction

The control permissions and the access permissions can be separated.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 37

openGauss
Feature Description 4 Database Security

Benefits

The control permissions of database administrators for tables need to be isolated
from their access permissions to improve the data security of common users.

Description

If multiple business departments use different database users to perform service
operations and a database maintenance department at the same level uses
database administrators to perform O&M operations, the business departments
may require that database administrators can only perform control operations
(DROP, ALTER, and TRUNCATE) and cannot perform access operations (INSERT,
DELETE, UPDATE, SELECT, and COPY) without authorization. That is, the control
permissions of database administrators for tables need to be isolated from their
access permissions to improve the data security of common users.

In separation-of-duties mode, a database administrator does not have permissions
for the tables in schemas of other users. In this case, database administrators have
neither control permissions nor access permissions. This does not meet the
requirements of the business departments mentioned above. Therefore,
openGauss provides private users to solve the problem. That is, create private
users with the INDEPENDENT attribute in non-separation-of-duties mode. Users
with the CREATEROLE permission or the system administrator permission can
create private users or change the attributes of common users to private users.
Common users can also change their own attributes to private users.

openGauss=# CREATE USER user_independent WITH INDEPENDENT IDENTIFIED BY " 7234@abc";

System administrators can manage (DROP, ALTER, and TRUNCATE) table objects

of private users but cannot access (INSERT, DELETE, SELECT, UPDATE, COPY,

GRANT, REVOKE, and ALTER OWNER) the objects before being authorized.
Enhancements

None.

Constraints

For a table owned by a private user, grant the trigger permission of the table to
other users with caution to prevent other users from using the trigger to view the
data of the private user.

If permissions related to private user tables are granted to non-private users, the
system administrator will obtain the same permissions.

Dependencies

None.

4.3 Database Encryption Authentication

Availability

This feature is available since openGauss 1.1.0.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 38

openGauss
Feature Description 4 Database Security

Introduction

The client/server (C/S) mode-based client connection authentication mechanism is
provided.

Benefits

The unidirectional, irreversible hash encryption algorithm PBKDF2 is used for
encryption and authentication, effectively defending against rainbow attacks.

Description

openGauss uses a basic client connection authentication mechanism. After a client
initiates a connection request, the server verifies the information and sends the
information required for authentication to the client based on the verification
result. The authentication information includes the salt, token, and server
signature. The client responds to the request and sends the authentication
information to the server. The server calls the authentication module to
authenticate the client authentication information. The user password is encrypted
and stored in the memory. During the entire authentication process, passwords are
encrypted for storage and transmission. When the user logs in to the system next
time, the hash value is calculated and compared with the key value stored on the
server to verify the correctness.

Enhancements

The message processing flow in the unified encryption and authentication process
effectively prevents attackers from cracking the username or password by
capturing packets.

Constraints

None.

Dependencies

None.

4.4 Data Encryption and Storage

Availability

This feature is available since openGauss 1.1.0.
Introduction

Imported data is encrypted before stored.
Benefits

You can use encrypted import interfaces to encrypt sensitive information and store
it in a table.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 39

openGauss

Feature Description 4 Database Security

Description

openGauss provides the encryption functions gs_encrypt_aes128() and
gs_encrypt(), and decryption functions gs_decrypt_aes128() and gs_decrypt().
Before you import data to a certain column in a table, you can use this function to
encrypt the data. The function can be called using a statement in the following
format:

gs_encrypt_aes128(column, key), gs_encrypt (decryptstr, keystr, decrypttype)

In the preceding command, key indicates the initial password specified by the user,
which is used to derive the encryption key. To encrypt an entire table, you need to
write an encryption function for each column.

If a user with the required permission wants to view specific data, the user can
decrypt required columns using the decryption function interface
gs_decrypt_aes128(column, key). To invoke the interface, run the following
command:

gs_decrypt_aes128(column, key), gs_decrypt(decryptstr, keystr, decrypttype)

Enhancements

Constraints

None.

None.

Dependencies

None.

4.5 Database Audit

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.1.0.

Audit logs record user operations performed on database startup and stopping, as
well as connection, DDL, DML, and DCL operations.

The audit log mechanism enhances the database capability of tracing
unauthorized operations and collecting evidence.

Database security is essential for a database system. openGauss writes all user
operations in the database into audit logs. Database security administrators can
use the audit logs to reproduce a series of events that cause faults in the database

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 40

openGauss
Feature Description 4 Database Security

and identify unauthorized users, unauthorized operations, and the time when
these operations are performed.

Enhancements

None.

Constraints

None.

Dependencies

None.

4.6 Network Communication Security

Availability
This feature is available since openGauss 1.1.0.
Introduction
To secure the transmission of sensitive data on the Internet, openGauss encrypts
communication between the server and the client using the Secure Socket Layer
(SSL) protocol.
Benefits
The communication between your client and the server can be secured.
Description

openGauss supports the SSL protocol. The SSL protocol is an application-layer
communication protocol with high security, which is mainly used for secure web
transmission. SSL contains a record layer and a transport layer. The record-layer
protocol determines the encapsulation format of the transport-layer data. The
transport-layer security protocol uses X.509 for authentication. The SSL protocol
uses asymmetric encryption algorithms to authenticate the identities of
communicating parties, and then the two parties exchange symmetric keys as
communication keys. The SSL protocol effectively ensures the confidentiality and
reliability of the communication between two applications and prevents the
communication between a client and a server from being eavesdropped by
attackers.

openGauss also supports the TLS 1.2 protocol. TLS 1.2 is a transport-layer
communication protocol with high security. It consists of the TLS Record and TLS
Handshake protocols. Each protocol suit has information in multiple formats. The
TLS protocol is independent of application-layer protocols. Upper-layer protocols
can be transparently distributed on the TLS protocol. The TLS protocol ensures the
data confidentiality and integrity for both communication parties.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 41

openGauss

Feature Description 4 Database Security

Enhancements

Constraints

Checking the strength of certificate signature algorithms: For low-strength
signature algorithms, alarms are reported, reminding you to replace the certificate
with another certificate containing a high-strength signature algorithm.

Checking the certificate validity period: If a certificate is about to expire in less
than seven days, an alarm is reported, reminding you to replace the certificate on
the client.

Checking certificate permissions: The certificate permissions are verified at the
connection setup stage.

The formal certificates and keys for servers and clients shall be obtained from the
Certificate Authority (CA). Assume the private key and certificate for a server are
server.key and server.crt, the private key and certificate for the client are
client.key and client.crt, and the CA root certificate is cacert.pem.

You need to enable the SSL protocol and configure the certificate and connection
mode.

Dependencies

OpenSSL

4.7 Resource Label

Availability

Introduction

Benefits

This feature is available since openGauss 1.1.0.

Database resources refer to database objects, such as databases, schemas, tables,
columns, views, and triggers. The more the database objects are, the more
complex the classification management of database resources is. The resource
label mechanism is a technology that classifies and labels database resources with
certain features to implement resource classification management. After adding
labels to some resources in a database, administrators can perform operations
such as data audit or anonymization using the labels to implement security
management on labeled database resources.

Proper resource labels can be used to effectively classify data objects, improve
management efficiency, and simplify security policy configuration. To perform
unified audit or data anonymization on a group of database resources, the
administrator can allocate a resource label to these resources first. The label
indicates that the database resources have a certain feature or require unified
configuration of a certain policy. The administrator can directly perform operations

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 42

openGauss

Feature Description

4 Database Security

Description

on the resource label, which greatly reduces the complexity of policy configuration
and information redundancy as well as improves management efficiency.

The resource label mechanism selectively classifies resources in the current
database. Administrators can use the following SQL syntax to create a resource
label and add the label to a group of database resources:

CREATE RESOURCE LABEL schm_lb ADD SCHEMA (schema_for_label);

CREATE RESOURCE LABEL tb_lb ADD TABLE(schema_for_label.table_for_label);

CREATE RESOURCE LABEL col_Lb ADD COLUMN((schema_for_label.table_for_label.column_for_label);
CREATE RESOURCE LABEL multi_lb ADD SCHEMA (schema_for_label), TABLE(table_for_label);

schema_for_label, table for_label, and column_for_label indicate the schema,
table, and column to be labeled, respectively. The schm_Lb label is added to
schema schm_for_label, tb_lb is added to table table for_label, col Ib is added
to column column_for_label, and multi_Lb is added to schema schm_for_label
and table table_for_label. You can perform unified audit or dynamic data
anonymization using the configured resource labels, that is, manage all labeled
database resources.

Currently, resource labels support the following database resource types: schema,
table, column, view, and function.

Enhancements

Constraints

None.

e Resource labels can be created only by a user with the POLADMIN and
SYSADMIN attributes or an initial user.

e Resource labels cannot be created for temporary tables.
e Columns in the same basic table can belong to only one resource tag.

Dependencies

None.

4.8 Unified Audit

Availability

Introduction

This feature is available since openGauss 1.1.0.

The audit mechanism is a security management solution that can effectively deal
with the attackers' repudiation. The larger the audit scope is, the more operations
can be monitored and the more audit logs are generated, affecting the actual
audit efficiency. The unified audit mechanism is a technology that implements
efficient security audit management by customizing audit policies. After the

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 43

openGauss

Feature Description 4 Database Security

Benefits

Description

administrator defines the audit object and audit behaviors, if the task executed by
a user is associated with an audit policy, the corresponding audit behavior is
generated and the audit log is recorded. Customized audit policies can cover
common user management activities, as well as DDL and DML operations,
meeting routine audit requirements.

Audit is indispensable for routine security management. When a traditional audit
mechanism is used to audit an operation, such as SELECT, a large number of audit
logs are generated, increasing the I/O of the entire system and affecting the
system performance and audit efficiency of administrators. The unified audit
mechanism allows you to customize policies for generating audit logs. For
example, only the operation that database account A queries table a is audited.
Customized audit greatly reduces the number of generated audit logs, ensuring
audit behaviors and reducing the impact on system performance. In addition,
customized audit policies can improve the audit efficiency of administrators.

The unified audit mechanism customizes audit behaviors based on resource labels
and classifies the supported audit behaviors into the ACCESS and PRIVILEGES
classes. The SQL syntax for creating a complete audit policy is as follows:

CREATE RESOURCE LABEL auditlabel add table(table_for_audit1, table_for_audit2);

CREATE AUDIT POLICY audit_select_policy ACCESS SELECT ON LABEL (auditlabel) FILTER ON ROLES(usera);
CREATE AUDIT POLICY audit_admin_policy PRIVILEGES ALTER, DROP ON LABEL (auditlabel) FILTER ON
IP(local);

auditlabel indicates the resource label in the current audit, which contains two
table objects. audit_select_policy defines the audit policy for user usera to audit
the SELECT operation on the objects with the auditlabel label, regardless of the
access source. audit_admin_policy defines a local audit policy for ALTER and
DROP operations on the objects with the auditlabel label, regardless of the user.
If ACCESS and PRIVILEGES are not specified, all DDL and DML operations on
objects with a resource label are audited. If no audit objects are specified,
operations on all objects are audited. The addition, deletion, and modification of
unified audit policies are also recorded in unified audit logs.

Currently, unified audit supports the following audit behaviors:

SQL Type Supported operations and object types

DDL Operations: ALL, ALTER, ANALYZE, COMMENT, CREATE, DROP,
GRANT, and REVOKE

SET SHOW

Objects: DATABASE, SCHEMA, FUNCTION, TRIGGER, TABLE,
SEQUENCE, FOREIGN_SERVER, FOREIGN_TABLE, TABLESPACE,
ROLE/USER, INDEX, VIEW, and DATA_SOURCE

DML Operations: ALL, COPY, DEALLOCATE, DELETE_P, EXECUTE,
REINDEX INSERT, REPARE, SELECT, TRUNCATE, and UPDATE

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 44

openGauss
Feature Description 4 Database Security

Enhancements

None.

Constraints

e The unified audit policy must be created by a user with the POLADMIN or
SYSADMIN attribute, or by the initial user. Common users do not have the
permission to access the security policy system catalog and system view.

e The syntax of a unified audit policy applies to either DDL or DML operations.
DDL operations and DML operations are mutually exclusive in an audit policy.
A maximum of 98 unified audit policies can be configured.

e Unified audit monitors the SQL statements executed by users on the clients,
but does not record the internal SQL statements of databases.

e In the same audit policy, the same resource tag can be bound to different
audit behaviors, and the same behavior can be bound to different resource
tags. The ALL operation type includes all operations supported by DDL or
DML.

e A resource label can be associated with different unified audit policies. Unified
audit outputs audit information in sequence based on the policies matched by
SQL statements.

e Audit logs of unified audit policies are recorded separately. Currently, no
visualized query interfaces are provided. Audit logs depend on the OS service
Rsyslog and are archived through the service configuration.

e In cloud service scenarios, logs need to be stored in the OBS. In hybrid cloud
scenarios, you can deploy Elasticsearch to collect logs and perform visualized
processing.

e It is recommended that APP in FILTER be set to applications in the same
trusted domain. Since a client may be forged, a security mechanism must be
formed on the client when APP is used to reduce misuse risks. Generally, you
are not advised to set APP. If it is set, pay attention to the risk of client
spoofing.

e Taking an IPv4 address as an example, the following formats are supported:

IP Address Example
Format

Single IP 127.0.0.1
address

IP address 127.0.0.1|255.255.255.0
with mask

CIDR IP 127.0.0.1/24
address

IP address 127.0.0.1-127.0.0.5
segment

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 45

openGauss

Feature Description 4 Database Security

Dependencies

In the public cloud service scenario, the OSS or OBS is required for log storage.

4.9 Dynamic Data Masking

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.1.0.

Data masking is an effective database privacy protection solution, which can
prevent attackers from snooping on private data. The dynamic data masking
mechanism is a technology that protects privacy data by customizing masking
policies. It can effectively prevent unauthorized users from accessing sensitive
information while retaining original data. After the administrator specifies the
object to be anonymized and customizes a data masking policy, if the database
resources queried by a user are associated with a masking policy, data is
anonymized based on the user identity and masking policy to restrict attackers'
access to privacy data.

Data privacy protection is one of the required database security capabilities. It can
restrict attackers' access to privacy data, ensuring privacy data security. The
dynamic data masking mechanism can protect the privacy of specified database
resources by configuring masking policies. In addition, the masking policy
configuration is flexible and can implement targeted privacy protection in specific
user scenarios.

The dynamic data masking mechanism customizes masking policies based on
resource labels. It can select masking modes based on the site requirements or
customize masking policies for specific users. The SQL syntax for creating a
complete masking policy is as follows:

CREATE RESOURCE LABEL label_for_creditcard ADD COLUMN (user1.table1.creditcard);

CREATE RESOURCE LABEL label_for_name ADD COLUMN((user1.table1.name);

CREATE MASKING POLICY msk_creditcard creditcardmasking ON LABEL(label_for_creditcard);

CREATE MASKING POLICY msk_name randommasking ON LABEL(label_for_name) FILTER ON IP(local),
ROLES(dev);

label_for_creditcard and msk_name are the resource labels for masking, and
each label is allocated to two column objects. creditcardmasking and
randommasking are preset masking functions. msk_creditcard specifies that the
masking policy creditcardmasking will be applied when any user accesses
resources with label_for_creditcard, regardless of the access source. msk_name
specifies that the masking policy randommasking will be applied when local user
dev accesses resources with label_for_name. If FILTER is not specified, the setting
takes effect for all users. Otherwise, the setting takes effect only for specified
users.

The following table shows the preset masking functions:

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 46

openGauss
Feature Description

4 Database Security

Masking
Function

Example

creditcardma
sking

'4880-9898-4545-2525'" will be anonymized as 'xxxx-xxxx-
xxxx-2525'. This function anonymizes digits except the last four
digits.

basicemailm
asking

'abcd@gmail.com' will be anonymized as 'xxxx@gmail.com'. This
function anonymizes text before the first @.

fullemailmas
king

'abcd@gmail.com' will be anonymized as xxxx@xxxxx.com'. This
function anonymizes text before the first dot (.) (except @).

alldigitsmask
ing

'alex123alex' will be anonymized as 'alex000alex'. This function
anonymizes only digits in the text.

shufflemaski | 'hello word' will be anonymized as 'hlwoeor dl'. This weak

ng masking function is implemented through character dislocation.
You are not advised to use this function to anonymize strings
with strong semantics.

randommask | 'hello word' will be anonymized as 'ad5f5ghdf5'. This function

ing randomly anonymizes text by character.

maskall '4880-9898-4545-2525" will be anonymized as

"OOXKXKKXXXXXXXX

The data types supported by each masking function are as follows:

Masking
Function

Supported Data Types

creditcardma
sking

BPCHAR, VARCHAR, NVARCHAR, TEXT (character data in credit
card format only)

basicemailm
asking

BPCHAR, VARCHAR, NVARCHAR, TEXT (character data in email
format only)

fullemailmas
king

BPCHAR, VARCHAR, NVARCHAR, TEXT (character data in email
format only)

alldigitsmask
ing

BPCHAR, VARCHAR, NVARCHAR, TEXT (character data
containing digits only)

shufflemaski | BPCHAR, VARCHAR, NVARCHAR, TEXT (text data only)
ng
randommask | BPCHAR, VARCHAR, NVARCHAR, TEXT (text data only)
ing
maskall BOOL, RELTIME, TIME, TIMETZ, INTERVAL, TIMESTAMP,

TIMESTAMPTZ, SMALLDATETIME, ABSTIME,

TEXT, BPCHAR, VARCHAR, NVARCHAR2, NAME, INTS8, INT4,
INT2, INT1, NUMRIC, FLOAT4, FLOATS8, CASH

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd.

47

openGauss

Feature Description

4 Database Security

For unsupported data types, the maskall function is used for data masking by

default. The data of the BOOL type is masked as '0'. The RELTIME type is masked

as '1970'. The TIME, TIMETZ, and INTERVAL types are masked as
'00:00:00.0000+00'. The TIMESTAMP, TIMESTAMPTZ, SMALLDATETIME, and
ABSTIME types are masked as '1970-01-01 00:00:00.0000'. The TEXT, CHAR,

BPCHAR, VARCHAR, NVARCHAR2, and NAME type are masked as 'x'. The INTS,

INT4, INT2, INT1, NUMERIC, FLOAT4, FLOATS types are masked as '0'. If the data
type is not supported by maskall, the masking policy cannot be created. If implicit

conversion is involved in the masking column, the data type after implicit

conversion is used for masking. In addition, if the masking policy is applied to a

data column and takes effect, operations on the data in the column are performed

based on the masking result.

Dynamic data masking applies to scenarios closely related to actual services. It

provides users with proper masking query APIs and error handling logic based on
service requirements to prevent raw data from being obtained through credential

stuffing.

Enhancements

Constraints

None.

e The dynamic data masking policy must be created by a user with the

POLADMIN or SYSADMIN attribute, or by the initial user. Common users do

not have the permission to access the security policy system catalog and
system view.

e Dynamic data masking takes effect only on data tables for which masking
policies are configured. Audit logs are not within the effective scope of the

masking policies.

e In a masking policy, only one masking mode can be specified for a resource

label.

e Multiple masking policies cannot be used to anonymize the same resource

label, except when FILTER is used to specify user scenarios where the policies

take effect and there is no intersection between user scenarios of different
masking policies that contain the same resource label. In this case, you can
identify the policy that a resource label is anonymized by based on the user

scenario.
e It is recommended that APP in FILTER be set to applications in the same

trusted domain. Since a client may be forged, a security mechanism must be
formed on the client when APP is used to reduce misuse risks. Generally, you

are not advised to set APP. If it is set, pay attention to the risk of client
spoofing.

e For INSERT or MERGE INTO operations with the query clause, if the source

table contains anonymized columns, the inserted or updated result in the

preceding two operations is the anonymized value and cannot be restored.

e When the built-in security policy is enabled, the ALTER TABLE EXCHANGE
PARTITION statement fails to be executed if the source table is in the
anonymized column.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd.

48

openGauss
Feature Description 4 Database Security

e If a dynamic data masking policy is configured for a table, grant the trigger
permission of the table to other users with caution to prevent other users
from using the trigger to bypass the masking policy.

e A maximum of 98 dynamic data masking policies can be created.
e Only the preceding seven preset masking policies can be used.

e Only data with the resource labels containing the COLUMN attribute can be
anonymized.

e Only columns in base tables can be anonymized.
e Only the data queried using SELECT can be anonymized.
e Taking an IPv4 address as an example, the following formats are supported:

IP Address Example
Format

Single IP 127.0.0.1
address

IP address 127.0.0.1|255.255.255.0
with mask

CIDR IP 127.0.0.1/24
address

IP address 127.0.0.1-127.0.0.5
segment

Dependencies

None.

4.10 Row-Level Access Control

Availability

This feature is available since openGauss 1.1.0.

Introduction

The row-level access control feature enables database access control to be
accurate to each row of data tables. When different users perform the same SQL
query operation, the read results may be different.

Benefits
When different users perform the same SQL query operation, the read results may
be different.

Description

You can create an RLS policy for a data table. The policy defines an expression
that takes effect only for specific database users and SQL operations. When a

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 49

openGauss
Feature Description 4 Database Security

database user accesses the data table, if a SQL statement meets the specified row-
level security policies of the data table, the expressions that meet the specified
condition will be combined by using AND or OR based on the attribute type
(PERMISSIVE | RESTRICTIVE) and applied to the execution plan in the query
optimization phase.

Row-level access control is used to control the visibility of row-level data in tables.
By predefining filters for data tables, the expressions that meet the specified
condition can be applied to execution plans in the query optimization phase,
which will affect the final execution result. Currently, the SQL statements that can
be affected include SELECT, UPDATE, and DELETE.

Enhancements

None.

Constraints

e Row-level access control policies can be applied only to SELECT, UPDATE, and
DELETE operations and cannot be applied to INSERT and MERGE operations.

e Row-level access control policies can be defined for row-store tables, row-
store partitioned tables, column-store tables, column-store partitioned tables,
replication tables, unlogged tables, and hash tables. Row-level access control
policies cannot be defined for HDFS tables, foreign tables, and temporary
tables.

e Row-level access control policies cannot be defined for views.

e A maximum of 100 row-level access control policies can be defined for a
table.

e |Initial users and system administrators are not affected by row-level access
control policies.

e If a dynamic data masking policy is configured for a table that has the row-
level access control policies defined, grant the trigger permission of the table
to other users with caution to prevent other users from using the trigger to
bypass the masking policy.

Dependencies

None.

4.11 Password Strength Verification

Availability

This feature is available since openGauss 1.1.0.

Introduction

Verifies the password strength when users access the database.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 50

openGauss

Feature Description 4 Database Security

Benefits

Description

Users cannot set passwords with low strength to enhance customer data security.

You need to specify a password when initializing a database, creating a user, or
modifying a user. The password must meet the strength requirements. Otherwise,
the system prompts you to enter the password again. Password complexity
requirements:

e Minimum number of uppercase letters (A-Z) (password_min_uppercase)
e Minimum number of lowercase letters (a-z) (password_min_lowercase)
e Minimum number of digits (0-9) (password_min_digital)

e Minimum number of special characters (password_min_special)

e Minimum password length (password_min_length)

e Maximum password length (password_max_length)

e A password must contain at least three types of the characters (uppercase
letters, lowercase letters, digits, and special characters).

e A password is case insensitive and cannot be the username or the username
spelled backwards.

e A new password cannot be the current password and the current password
spelled backwards.

e |t must be a strong password.

(10 NOTE

Weak passwords are weak passwords that are easy to crack. The definition of weak
passwords may vary with users or user groups. Users can define their own weak
passwords.

If parameter password_policy is set to 1, the default password complexity rule is
used to check passwords.

Passwords in the weak password dictionary are stored in the gs_global_config
system catalog (the record whose name field is weak_password is the stored
weak password). When a user is created or modified, the password set by the user
is compared with the password stored in the weak password dictionary. If the
password is matched, a message is displayed, indicating that the password is weak
and the password fails to be set.

The weak password dictionary is empty by default. You can add or delete weak
passwords using the following syntax:

CREATE WEAK PASSWORD DICTIONARY WITH VALUES ('password1'), (‘password2');
DROP WEAK PASSWORD DICTIONARY;

In the preceding statement, password1 and password2 are weak passwords
prepared by users. After the statement is executed successfully, the passwords are
saved to the weak password system catalog.

When a user attempts to run the CREATE WEAK PASSWORD DICTIONARY
statement to insert a weak password that already exists in the table, only one
weak password is retained in the table.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 51

openGauss
Feature Description 4 Database Security

The DROP WEAK PASSWORD DICTIONARY statement clears weak passwords in
the entire system catalog.

The gs_global_config system catalog does not have a unique index. You are not
advised to use the COPY FROM statement to copy the same data to the
gs_global_config system catalog.

To audit weak password operations, set the third bit of the value of the
audit_system_object parameter to 1.

Enhancements

In openGauss 1.1.0, the weak password dictionary function is implemented.

Constraints
e |Initial users, system administrators, and security administrators can view, add,
and delete weak password dictionaries.
e Common users can view but cannot add or delete weak password dictionaries.
Dependencies

None.

4.12 Equality Query in a Fully-encrypted Database

Availability

This feature is available since openGauss 1.1.0.

Introduction

The encrypted database aims to protect privacy throughout the data lifecycle. In
this way, data is always in ciphertext during transmission, computing, and storage
regardless of the service scenario and environment. After the data owner encrypts
data on the client and sends the encrypted data to the server, no attacker can
obtain valuable information even if the attacker steals user data by exploiting
system vulnerabilities. In this way, data privacy is protected.

Benefits

The entire service data flow is in ciphertext during data processing, so the
following can be implemented by using a fully-encrypted database:

1. Protect data privacy and security throughout the lifecycle on the cloud.
Attackers cannot obtain valid information from the database server regardless
of the data status.

2. Help cloud service providers obtain third-party trust. Users, including service
administrators and O&M administrators in enterprise service scenarios and
application developers in consumer cloud services, can keep keys by
themselves so that users with high permissions cannot obtain valid data.

3. Enable cloud databases to better comply with personal privacy protection
laws and regulations with the help of the fully-encrypted database.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 52

openGauss

Feature Description 4 Database Security

Description

From the perspective of users, the encrypted equality query functions are divided
into three parts, which are implemented by the newly added KeyTool and the
enhanced openGauss gsql client.

First, this feature provides the client key management function. Users can use
KeyTool to generate, destroy, and update CMKs, and import and export keys. With
the import and export functions of KeyTool, CMKs can be transmitted between
different clients. In addition, the KeyTool implements key management on a single
client. By configuring management files, you can store and update keys.

In addition, this feature provides the key creation and encrypted table creation
functions. The SQL syntax CREATE CLINET MASTER KEY and CREATE COLUMN
ENCRYPTION KEY are added to record and manage CMK and CEK metadata in the
database. The CMK and CEK information is recorded in the new system catalog.
The CREATE TABLE syntax is extended to specify a column encryption key and
encryption algorithm for each sensitive information column in a table, facilitating
subsequent ciphertext data storage.

This feature supports the encrypted equality query function, which is the core of
the entire feature. Although users are unaware of the ciphertext query, the query
of sensitive data is restricted by the specifications of the current encrypted
equality query.

From the overall perspective, this feature is used to store and manage data based
on sensitive data protection requirements and implement query tasks based on
ciphertext data.

Enhancements

Constraints

None.

e Data is encrypted at the column level, and encryption policies cannot be
differentiated by row level.

e Except the RENAME operation, the ALTER TABLE syntax cannot be used to
change columns in an encrypted table (including the conversion between
encrypted and unencrypted columns). The ADD and DROP operations can be
used to add and delete encrypted columns, respectively.

e The CHECK(COLUMN IS NOT NULL) syntax can be used, but most check
constraint syntax cannot be set for encrypted columns.

e When support_extended_features is set to off, primary key and unique
cannot be used for encrypted columns. When support_extended_features is
set to on, only primary key and unique can be used for encrypted columns.

e Different data types cannot be implicitly converted.

e The set operation cannot be performed between ciphertexts of different data
types.
e Range partitioning cannot be created for encrypted columns.

e Only the repeat and empty_blob() functions can be used to encrypt columns.

e The current version supports only gsql and JDBC (deployed on a Linux OS)
clients. Other clients such as ODBC do not support encrypted equality query.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 53

openGauss
Feature Description

4 Database Security

Data can only be imported to the encrypted table by running copy from
stdin, \copy, or insert into values (...) on the client.

Copying an encrypted table to a file is not supported.

The system does not support encrypted queries, such as sorting, range query,
and fuzzy query, except equality query.

The encrypted syntax of stored procedures for some functions is supported.
For details about the constraints, see "Encrypted Functions and Stored
Procedures" in the Developer Guide.

Non-encrypted table data cannot be inserted into encrypted table data using
the INSERT INTO... SELECT... or MERGE INTO syntax.

For a request in connection state, the CEK information change on the server
can be detected only after the cache update operation is triggered (for
example, the user is changed or the encrypted column fails to be decrypted)
and the connection is re-established.

Encrypted equality query is not supported on columns encrypted using the
random encryption algorithm.

An error is reported if the two attribute conditions used for comparison in the
encrypted equality query use different data encryption keys.

Encrypted equality query is not supported in time series tables and foreign
tables. The ustore storage engine is not supported.

If the database service configuration (such as the pg_settings system catalog,
permission, key, and encrypted column) is changed, you need to re-establish a
JDBC connection to make the configuration take effect.

Multiple SQL statements cannot be executed at the same time. This constraint
does not apply to the scenario where the INSERT INTO statement is executed
in multiple batches.

Encrypted equality query supports the following data types:

Category Type Description

tinyint/tinyint(n)

Integer types Tiny integer, which is the same as int1.

smallint Small integer, which is the same as
int2.
int4 Common integer.

binary_integer Oracle compatibility type. Generally,

the value is an integer.

bigint/bigint(n) Big integer, which is the same as int8.

Numeric data | numeric(p,s) A number with the precision p.

types o L
number Oracle compatibility type, which is the
same as numeric(p,s).
Floating point | float4 Single-precision floating point.
types
P float8 Double-precision floating point.

double precision

Double-precision floating point.

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 54

openGauss
Feature Description

4 Database Security

Character data | char/char(n) Fixed-length character string. If the
types length is insufficient, add spaces. The
default precision is 1.
varchar(n) Variable-length character string, where
n indicates the maximum number of
bytes.
text Text type.
varchar2(n) Oracle compatibility type, which is the
same as varchar(n).
clob Character large object.
Binary data bytea Variable-length binary string.
types . .
blob Binary large object.
Dependencies
None.

4.13 Ledger Database Mechanism

Availability

This feature is available since openGauss 2.1.0.

Introduction

The ledger database feature includes adding the verification information to a
tamper-proof table specified by a user and recording the user's data operation
history. The consistency between the data and operation history is checked to
ensure that the user data cannot be maliciously tampered with. When a user
performs DML operations on a tamper-proof table, the system adds a small
amount of additional row-level verification information to the table and records
the SQL statements and data change history. The feature provides a verification
API for users to check whether the data in the tamper-proof table is consistent
with the operation information recorded by the system.

Benefits

The ledger database provides user data operation records, historical data change
records, and easy-to-use consistency verification API to help users check whether
sensitive information in the database is maliciously tampered with at any time,
effectively improving the tamper-proof capability of the database.

Description

The ledger database uses the ledger schema to isolate common tables from
tamper-proof user tables. If a row-store table created in the ledger schema has

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 55

openGauss
Feature Description

4 Database Security

the tamper-proof attribute, it is a tamper-proof user table. When data is inserted
into a tamper-proof user table, the system automatically generates a small
amount of row-level verification information. When a user executes DML, the
system records user operations in the global blockchain table
(GS_GLOBAL_CHAIN) and records data changes in the historical table
corresponding to the user table. The data in operation records, data change
records, and the user table must be the same. The ledger database provides a
high-performance verification API for users to verify data consistency. If the
consistency verification fails, the data may be tampered with. In this case, contact
the audit administrator to trace the operation history.

Enhancements

None.

Constraints

Dependencies

In tamper-proof schema, row-store tables are tamper-proofing, whereas
temporary tables, unlogged tables, column-store tables, and time series tables
are not.

The structure of the tamper-proof user table cannot be modified. The tamper-
proof tables cannot be truncated. The tamper-proof user table cannot be
switched to a common schema. The non-tamper-proof table cannot be
switched to the tamper-proof schema.

If the tamper-proof table is a partitioned table, operations such as exchange
partition, drop partition and truncate partition are not supported.

Functions and triggers cannot be used to modify data in a tamper-proof user
table.

When a tamper-proof user table is created, the column named hash cannot
exist.

Common users can call the tampering verification API to verify only tables
that they have the permission to query.

Only the audit administrator and initial user can query the global blockchain
table and tables in BLOCKCHAIN schema. Common users do not have the
permission to access and all users do not have the permission to modify the
tables.

According to the naming rules of historical tables, if the name of the schema
or table to be created ends or starts with an underscore (_), the name of the
corresponding historical table may conflict with that of an existing table. In
this case, you need to rename the table.

None.

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 56

openGauss
Feature Description 5 Enterprise-Level Features

Enterprise-Level Features

5.1 Support for Functions and Stored Procedures
5.2 SQL Hints

5.3 Full-Text Indexing

5.4 Copy Interface for Error Tolerance

5.5 Partitioning

5.6 Support for Advanced Analysis Functions
5.7 Materialized View

5.8 HyperLoglLog

5.9 Creating an Index Online

5.10 Autonomous Transaction

5.11 Global Temporary Table

5.12 Pseudocolumn ROWNUM

5.13 Stored Procedure Debugging

5.1 Support for Functions and Stored Procedures

Availability

This feature is available since openGauss 1.1.0.

Introduction

Functions and stored procedures are important database objects. They encapsulate
SQL statement sets used for certain functions so that the statements can be easily
invoked.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 57

openGauss
Feature Description 5 Enterprise-Level Features

Benefits

1. Allows customers to modularize program design and encapsulate SQL
statement sets, easy to invoke.

2. Caches the compilation results of stored procedures to accelerate SQL
statement set execution.

3. Allows system administrators to restrict the permission for executing a specific
stored procedure and controls access to the corresponding type of data. This
prevents access from unauthorized users and ensures data security.

Description
openGauss supports functions and stored procedures compliant with the SQL
standard. The stored procedures are compatible with certain mainstream stored
procedure syntax, improving their usability.

Enhancements
None.

Constraints
None.

Dependencies
None.

5.2 SQL Hints

Availability
This feature is available since openGauss 1.1.0.

Introduction
SQL hints can be used to override execution plans.

Benefits
Improves SQL query performance.

Description
In plan hints, you can specify a join order; join, stream, and scan operations, the
number of rows in a result, and redistribution skew information to tune an
execution plan, improving query performance.

Enhancements

None.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 58

openGauss
Feature Description

5 Enterprise-Level Features

Constraints

None.

Dependencies

None.

5.3 Full-Text Indexing

Availability

This feature is available since openGauss 1.1.0.

Introduction

openGauss full-text indexing allows documents to be preprocessed and facilitates
subsequent search.

Benefits

openGauss full-text indexing provides the capability to identify natural-language
documents that satisfy a query and sort them by relevance.

Description

The preprocessing process of creating a full-text index includes:

Parsing documents into tokens

It is useful to identify various classes of tokens, for example, numbers, words,
compound words, and email addresses, so that they can be processed
differently. In principle, token classes depend on the specific application, but
for most purposes it is adequate to use a predefined set of classes.

Converting tokens into lexemes

A lexeme is a string, just like a token, but it has been normalized so that
different forms of the same word are made alike. For example, normalization
almost always includes folding upper-case letters to lower-case, and often
involves removal of suffixes (such as s or es in English). This allows searches
to find variant forms of the same word, without entering all the possible
variants. Also, this step typically eliminates stop words, which are so common
and usually useless for searching. (In short, tokens are raw fragments of the
document text, while lexemes are words that are believed useful for indexing
and searching.) openGauss uses dictionaries to perform this step and provides
various standard dictionaries.

Storing preprocessed documents optimized for searching

For example, each document can be represented as a sorted array of
normalized lexemes. Along with the lexemes, it is often desirable to store
positional information for proximity ranking. Therefore, a document that
contains a more "dense" area of query words is assigned with a higher rank
than the one with scattered query words. Dictionaries allow fine-grained

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 59

openGauss
Feature Description 5 Enterprise-Level Features

control over how tokens are normalized. With appropriate dictionaries, you
can define stop words that should not be indexed.

Enhancements

None.

Constraints

The current limitations of openGauss's text search features are:

e The length of each lexeme must be less than 2 KB.
e The length of a tsvector (lexemes + positions) must be less than 1 MB.
e Position values in tsvector must be greater than 0 and less than or equal to

16383.
e No more than 256 positions per lexeme. Excessive positions, if any, will be
discarded.
Dependencies
None.

5.4 Copy Interface for Error Tolerance

Availability

This feature is available since openGauss 1.0.0.

Introduction

Certain errors that occur during the copy process are imported to a specified error
table without interrupting the process.

Benefits

Refine the copy function and improve the tolerance and robustness to common
errors such as invalid formats.

Description

openGauss provides the encapsulated copy error tables for creating functions and
allows users to specify error tolerance options when using the Copy From
statement. In this way, errors related to parsing, data format, and character set
during the execution of the Copy From statement are recorded in the error table
instead of being reported and interrupted. Even if a small amount of data in the
target file of Copy From is incorrect, the data can be imported to the database.
You can locate and rectify the fault in the error table later.

Enhancements

None

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 60

openGauss
Feature Description

5 Enterprise-Level Features

Constraints

For details, see "Importing Data > Running the COPY FROM STDIN Statement to
Import Data > Handling Import Errors" in the Developer Guide.

Dependencies

None

5.5 Partitioning

Availability

This feature is available since openGauss 1.1.0.

Introduction

Data is partitioned horizontally on a node using a specified policy. This operation
splits a table into multiple partitions that are not overlapped.

Benefits

In common scenarios, a partitioned table has the following advantages over a
common table:

Description

High query performance: You can specify partitions when querying partitioned
tables, improving query efficiency.

High availability: If a certain partition in a partitioned table is faulty, data in
the other partitions is still available.

Balanced 1/O: Partitions can be mapped to different disks to balance I/O and
improve the overall system performance.

Currently, openGauss supports range partitioned tables, list partitioned tables, and
hash partitioned tables.

In a range partitioned table, data within a certain range is mapped to each
partition. The range is determined by the partition key specified when the
partitioned table is created. This partitioning mode is most commonly used.

With the range partitioning function, the database divides a record, which is
to be inserted into a table, into multiple ranges using one or multiple columns
and creates a partition for each range to store data. Partition ranges do no
overlap.

In a list partitioned table, data is mapped to each partition based on the key
values contained in each partition. The key values contained in a partition are
specified when the partition is created.

The list partitioning function divides the key values in the records to be
inserted into a table into multiple lists (the lists do not overlap in different
partitions) based on a column of the table, and then creates a partition for
each list to store the corresponding data.

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 61

openGauss
Feature Description 5 Enterprise-Level Features

e In a hash partitioned table, data is mapped to each partition using the hash
algorithm, and each partition stores records with the same hash value.

The hash partitioning function uses the internal hash algorithm to divide
records to be inserted into a table into partitions based on a column of the
table.

If you specify the PARTITION parameter when running the CREATE TABLE
statement, data in the table will be partitioned. Users can modify partition keys as
needed during table creation to make the query result stored in the same or least
partitions (called partition pruning), obtaining consecutive 1/O to improve the
query performance.

In actual services, time is often used to filter query objects. Therefore, you can
select the time column as the partition key. The key value range can be adjusted
based on the total data volume and the data volume queried at a time.

Enhancements

Range partitioned tables can be combined.

Constraints

None.

Dependencies

None.

5.6 Support for Advanced Analysis Functions

Availability
This feature is available since openGauss 1.1.0.

Introduction
None.

Benefits
Window functions are provided for advanced data analysis and processing. The
window function groups the data in a table in advance. Each row belongs to a
specific group. Then, a series of association analysis calculations are performed on
the group. In this way, some attributes of each tuple in the set and association
information with other tuples can be mined.

Description

The following uses an example to describe the window analysis function: Compare
the salary of each person in a department with the average salary of the
department.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 62

openGauss

Feature Description 5 Enterprise-Level Features

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;
depname | empno | salary | avg

develop | 11 | 5200 | 5020.0000000000000000
develop | 7 | 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 | 4800 | 4866.6666666666666667
sales | 1 | 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667

(10 rows)

The analysis function avg(salary) OVER (PARTITION BY depname) easily
calculates each employee's salary and the average salary of the department.

Currently, the system supports the following analysis functions: row_number(),
rank(), dense_rank(), percent_rank(), cume_dist(), ntile(), lag(), lead(),
first_value(), last_value(), and nth_value(). For details about functions and
statements, see "SQL Reference > Functions and Operators > Window Functions"
in the Developer Guide.

Enhancements

Constraints

None.

None.

Dependencies

None.

5.7 Materialized View

Availability

Introduction

Benefits

This feature is available since openGauss 1.1.0.

A materialized view is a special physical table, which is relative to a common view.
A common view is a virtual table and has many application limitations. Any query
on a view is actually converted into a query on an SQL statement, and
performance is not actually improved. The materialized view actually stores the
results of the statements executed by the SQL statement, and is used to cache the
results.

The materialized view function is used to improve query efficiency.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 63

openGauss
Feature Description 5 Enterprise-Level Features

Description

Full materialized views and incremental materialized views are supported. Full
materialized views can only be updated in full mode. Incremental materialized
views can be updated asynchronously. You can run statements to update new data
to materialized views.

Enhancements

None.

Constraints

Only simple filter queries and UNION ALL statements are supported for base
tables.

Dependencies

None.

5.8 HyperLoglLog

Availability
This feature is available since openGauss 1.1.0.
Introduction
HyperLoglog (HLL) is used to count the number of distinct values.
Benefits
Improves AP/TP query performance.
Description

HLL is an approximation algorithm for efficiently counting the number of distinct
values in a dataset. It features faster computing and lower space usage. You only
need to store HLL data structures instead of datasets. When new data is added to
a dataset, make hash calculation on the data and insert the result to an HLL.
Then, you can obtain the final result based on the HLL.

HLL has advantages over others in the computing speed and storage space
requirement. In terms of time complexity, the Sort algorithm needs to sort at least
O(n log n) time. Although the Hash algorithm can obtain the result by scanning
the entire table O(n) time, the storage space is as follows: Both the Sort and Hash
algorithms need to store the original data before collecting statistics, which
consumes a large amount of storage space. For the HLL, the original data does
not need to be stored, and only the HLL data structure needs to be maintained.
Therefore, the occupied space is always at the 1280-byte constant level.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 64

openGauss

Feature Description 5 Enterprise-Level Features

Enhancements

Constraints

None.

None.

Dependencies

None.

5.9 Creating an Index Online

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.1.0.

Uses the CREATE INDEX CONCURRENTLY syntax to create indexes online without
blocking DML.

When creating an index, you can specify the CONCURRENTLY keyword to ensure
that the DML and online services are not blocked during the index creation.

A normal CREATE INDEX acquires exclusive lock on the table on which the index
depends, blocking other accesses until the index drop can be completed. If the
CONCURRENTLY keyword is specified, the ShareUpdateExclusiveLock lock is added
to the table so that DML is not blocked during the creation.

This keyword is specified when an index is created online. The entire table needs
to be scanned twice and built. When the table is scanned for the first time, an
index is created and the read and write operations are not blocked. During the
second scan, changes that have occurred since the first scan are merged and
updated. The table needs to be scanned and built twice, and all existing
transactions that may modify the table must be completed. This means that the
creation of the index takes a longer time than normal. In addition, the CPU and
I/O consumption also affects other services.

Enhancements

Constraints

None

e Only one index name can be specified when an index is created online.

e The CREATE INDEX statement can be run within a transaction, but CREATE
INDEX CONCURRENTLY cannot.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 65

openGauss

Feature Description 5 Enterprise-Level Features

e Column-store tables, partitioned tables, and temporary tables do not support
CREATE INDEX CONCURRENTLY.

Dependencies

None

5.10 Autonomous Transaction

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.1.0.

An autonomous transaction is a type of transaction in which the commit of a sub-
transaction is not affected by the commit or rollback of the main transaction.

This feature meets diversified application scenarios.

In an autonomous transaction, a specified type of SQL statements are executed in
an independent transaction context during the execution of the main transaction.
The commit and rollback operations of an autonomous transaction are not
affected by the commit and rollback operations of the main transaction.

User-defined functions and stored procedures support autonomous transactions.

A typical application scenario is as follows: A table is used to record the operation
information during the main transaction execution. When the main transaction
fails to be rolled back, the operation information recorded in the table cannot be
rolled back.

Enhancements

Constraints

None

e A trigger function does not support autonomous transactions.

e In the autonomous transaction block of a function or stored procedure, static
SQL statements do not support variable transfer.

e Autonomous transactions do not support nesting.

e A function containing an autonomous transaction does not support the return
value of parameter transfer.

e A stored procedure or function that contains an autonomous transaction does
not support exception handling.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 66

openGauss

Feature Description 5 Enterprise-Level Features

Dependencies

None

5.11 Global Temporary Table

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.1.0.

A temporary table does not guarantee persistency. Its life cycle is usually bound to
a session or transaction, which can be used to store temporary data during
processing and accelerate query.

This feature improves the expression capability and usability of temporary tables.

The metadata of the global temporary table is visible to all sessions. After the
sessions end, the metadata still exists. The user data, indexes, and statistics of a
session are isolated from those of another session. Each session can only view and
modify the data submitted by itself.

Global temporary tables have two schemas: ON COMMIT PRESERVE ROWS and
ON COMMIT PRESERVE ROWS. In session-based ON COMMIT PRESERVE ROWS
schema, user data is automatically cleared when a session ends. In transaction-
based ON COMMIT DELETE ROWS schema, user data is automatically cleared
when the commit or rollback operation is performed. If the ON COMMIT option is
not specified during table creation, the session level is used by default. Different
from local temporary tables, you can specify a schema that does not start with
pg_temp_ when creating a global temporary table.

Enhancements

Constraints

The processing of the global temporary table is added based on the local
temporary table.

e Parallel scanning is not supported.

e Temp tablespace is not supported.

e Partitions are not supported.

e GIST indexes are not supported.

e The user-defined statistics pg_statistic_ext is not supported.
e ON COMMIT DRORP is not supported.

e Hash bucket cluster storage is not supported.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 67

openGauss
Feature Description

5 Enterprise-Level Features

Dependencies

Row store is not supported.

None

5.12 Pseudocolumn ROWNUM

Availability

This feature is available since openGauss 1.0.1.

Introduction

ROWNUM is a sequence number generated for each record in the query result.
The sequence number starts from 1 and is unique.

Benefits

Description

This feature is compatible with Oracle features, facilitating database
migration.

Similar to the LIMIT feature, this feature can filter out the first n records in
the result set.

ROWNUM (pseudocolumn), which is used to label the records that meet
conditions in the SQL query in sequence. In the query result, the value of
ROWNUM in the first line is 1, the value of ROWNUM in the second line is 2, and
so on. The value of ROWNUM in the nth line is n. This feature is used to filter the
first n rows of data in the query result set, which is similar to the LIMIT function in
openGauss.

Enhancements

During internal execution, the optimizer rewrites ROWNUM into LIMIT to
accelerate the execution speed.

Constraints

Do not use the pseudocolumn ROWNUM as an alias to avoid ambiguity in
SQL statements.

Do not use ROWNUM when creating an index. Bad example: create index
index_name on table(rownum);

Do not use ROWNUM as the default value when creating a table. Bad
example: create table table_name(id int default rownum);

Do not use ROWNUM as an alias in the WHERE clause. Bad example: select
rownum rn from table where rn < 5;

Do not use ROWNUM when inserting data. Bad example: insert into table
values (rownum,'blue')

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 68

openGauss

Feature Description 5 Enterprise-Level Features

e Do not use ROWNUM in a table-less query. Bad example: select * from
(values(rownum,1)), x(a,b);

e If the HAVING clause contains ROWNUM (and is not in the aggregate
function), the GROUP BY clause must contain ROWNUM (and is not in the
aggregate function).

Dependencies

None

5.13 Stored Procedure Debugging

Availability

Introduction

Benefits

Description

This feature was introduced in openGauss 1.0.0. After the third-party library code
directory structure was adjusted, this feature was temporarily deleted and is now
available since openGauss 1.1.0.

This feature provides a group of APIs for debugging stored procedures, such as
breakpoint debugging and variable printing.

This feature improves user experience in developing stored procedures based on
openGauss.

Stored procedures are important database objects. They encapsulate SQL
statement sets used for certain functions so that the statements can be easily
invoked. A stored procedure usually contains many SQL statements and procedural
execution structures, depending on the service scale. However, writing a large
stored procedure is usually accompanied by logic bugs. It is difficult or even
impossible to find the bugs by only executing the stored procedure. Therefore, a
debugging tool is required.

The stored procedure debugging tool provides a group of debugging APIs to
enable the stored procedure to be executed step by step. During the execution,
you can set breakpoints and print variables so that SQL developers can detect and
correct errors in time and develop functions more efficiently and with high quality.

Enhancements

Constraints

None

None

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 69

openGauss
Feature Description 5 Enterprise-Level Features

Dependencies

None

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 70

openGauss

Feature Description 6 Application Development Interfaces

Application Development Interfaces

6.1 Standard SQL

6.2 Standard Development Interfaces
6.3 PostgreSQL API Compatibility

6.4 PL/Java

6.1 Standard SQL

Availability

Introduction

This feature is available since openGauss 1.0.0.

SQL is a standard computer language used to control the access to databases and
manage data in databases. SQL standards are classified into core features and
optional features. Most databases do not fully support SQL standards.

openGauss supports most of the core features of SQL:2011 and some optional
features, providing a unified SQL interface for users.

Benefits
All database vendors can use a unified SQL interface, reducing the costs of
learning languages and migrating applications.
Description
For details, see "SQL Reference > SQL Syntax" in the Developer Guide.
Enhancements

None

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 71

openGauss
Feature Description 6 Application Development Interfaces

Constraints

None

Dependencies

None

6.2 Standard Development Interfaces

Availability
This feature is available since openGauss 1.0.0.

Introduction
Standard ODBC 3.5 and JDBC 4.0 APIs are supported.

Benefits
Standard ODBC and JDBC interfaces are provided to ensure quick migration of
user services to openGauss.

Description
Currently, the standard ODBC 3.5 and JDBC 4.0 APIs are supported. The ODBC
interface supports SUSE Linux, Windows 32-bit, and Windows 64-bit platforms.
The JDBC API supports all platforms.

Enhancements
The function of connecting JDBC to a third-party log framework is added. JDBC
can interconnect with a third-party log framework to meet users' log management
and control requirements.

Constraints
None

Dependencies
None

6.3 PostgreSQL API Compatibility

Availability

This feature is available since openGauss 1.0.0.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 72

openGauss

Feature Description 6 Application Development Interfaces

Introduction

Compatible with PostgreSQL clients and standard APIs.

Benefits
Compatible with the PostgreSQL clients and standard APIs, and can be seamlessly
interconnected with PostgreSQL ecosystem tools.
Description
Compatible with PostgreSQL clients and standard APlIs.
Enhancements
None
Constraints
None
Dependencies
None

6.4 PL/Java

Availability
This feature is available since openGauss 1.0.0.

Introduction
The Java user-defined field (UDF) is supported.

Benefits
A development environment is provided for multiple functions.

Description
With the openGauss PL/Java function, you can choose your favorite Java IDE to
write Java methods and install the JAR files containing these methods into
openGauss before invoking them. openGauss PL/Java is developed based on open-
source tada PL/Java 1.5.2. PL/Java uses Huawei JDK V100R001CO0SPC190B003-
boo.

Enhancements

None

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 73

openGauss
Feature Description

6 Application Development Interfaces

Constraints

Dependencies

Java UDFs can implement simple Java computing. However, do not

encapsulate services in Java UDFs.

Do not connect to a database in any way (for example, JDBC) in Java

functions.

Use Huawei JDK V100R001CO0SPC190B003-b09 to compile Java methods and

JAR files.

Currently, only data types listed in Table 6-1 are supported. Other data types,

such as user-defined data types and complex data types (for example, Java

array and its derived types) are not supported.
Currently, UDAF and UDTF are not supported.

Table 6-1 PL/Java mapping for default data types

openGauss Java

BOOLEAN boolean

"char" byte

bytea byte[]

SMALLINT short

INTEGER int

BIGINT long

FLOAT4 float

FLOAT8 double

CHAR java.lang.String

VARCHAR java.lang.String

TEXT java.lang.String

name java.lang.String

DATE java.sgl.Timestamp

TIME java.sql.Time (stored value treated
as local time)

TIMETZ java.sgl.Time

TIMESTAMP java.sgl.Timestamp

TIMESTAMPTZ java.sgl.Timestamp

PL/Java depends on the Java Development Kit (JDK) environment. Currently, JDK is

included in openGauss and installation is not required. If you have installed the

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd.

74

openGauss
Feature Description 6 Application Development Interfaces

same or different versions of JDK, no conflict will occur. openGauss uses Huawei
JDK V100R001C00SPC190B003-b09 to run PL/Java.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 75

openGauss

Feature Description 7 Al Capabilities

Al Capabilities

7.1 Predictor: Al Query Time Forecasting
7.2 X-Tuner: Parameter Optimization and Diagnosis
7.3 SQLdiag: Slow SQL Discovery

7.4 Anomaly-detection: Database Indicator Collection, Forecasting, and Exception
Monitoring

7.5 Index-advisor: Index Recommendation
7.6 DeepSQL: Al Algorithm in the Library

7.1 Predictor: Al Query Time Forecasting

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.0.0.

Predictor is a query time forecasting tool that leverages machine learning and has
online learning capability. Predictor can predict the execution time of a plan in the
database kernel by continuously learning the historical execution information
collected in the database.

This feature predicts the SQL statement execution time based on the Al model
before the SQL statement is executed. Based on the estimated SQL time, you can
detect possible abnormal SQL statements and optimize or schedule them in
advance to prevent system running from being affected.

The prediction of Al query time depends on the collection of local query plans.
During query execution, you need to collect the actual query plan (including the
plan structure, operator type, related data source, and filter criteria), actual

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 76

openGauss
Feature Description 7 Al Capabilities

execution time of each operator node, cost estimated by the optimizer, number of
rows returned by the optimizer, number of rows estimated by the optimizer, and
number of parallel rows. These records are stored in data tables and managed
persistently, and expired data will be cleared periodically.

After the database kernel automatically collects historical data, the administrator
encodes the data and sends a request to Python through the CURL API to
configure the model, send data, and trigger training. You can call the TensorBoard
API to monitor the training process. The model returns the prediction accuracy of
each project and saves the final model. The database updates the system tables
related to the model information based on the result returned by the Al engine.

This feature is triggered when explain (analyze on, predictor <model_name>)
SELECT... " is executed and the model is converged. The database determines
whether the current model meets the requirements based on the plan encoding. If
the model meets the requirements, the model loading request is sent to Python
(the model needs to be loaded only once after the model training is complete).
After the model is loaded, the plan encoding file is inferred and the prediction
result of each node is returned.

Enhancements

None.

Constraints

e The database system is normal. The user successfully logs in to the database
through identity authentication and accesses the authorized data.

e The SQL syntax is correct and no error is reported.
e SQL statements executed by users do not cause database exceptions.

e In the historical performance data window, the cluster concurrency is stable,
the cluster scale, table structure, and table quantity remain unchanged, the
data volume does not change abruptly, and the GUC parameters related to
query performance remain unchanged. If the preceding conditions are
damaged, the model becomes invalid. In this case, you need to invalidate all
historical performance data, collect data again, and retrain the model.

e When a model is loaded, the structure, parameters, and training information
of the original model are completely saved. If the original model information
is lost, the model cannot be loaded and needs to be trained again.

e Historical performance data can be properly collected and encoded, and no
error is reported when the encoded data is properly parsed.

e You can install the following software by using the provided installation
scripts or by yourself: Python=3.6.4, configparser==3.8.1, Flask==0.12.2,
Keras==2.2.4, numpy==1.16.4, scikit-learn==0.19.1, pandas==0.25.1,
tensorboard==1.14.0, and tensorflow-gpu==1.14.0 or tensorflow==1.14.0.

e OpenSSL has been installed in the user environment, and the certificate has
been generated using a script or based on the usage description.

e Currently, administrators need to manually synchronize models across
database namespaces. Automatic synchronization is not supported.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 77

openGauss
Feature Description 7 Al Capabilities

Dependencies

None.

7.2 X-Tuner: Parameter Optimization and Diagnosis

Availability
This feature is available since openGauss 1.0.0.
Introduction

X-Tuner is a parameter tuning tool integrated into databases. It uses Al

technologies such as deep reinforcement learning and global search algorithms to

obtain the optimal database parameter settings without manual intervention. This

function is not forcibly deployed with the database environment. It can be

independently deployed and run without the database installation environment.
Benefits

This tool can quickly provide the parameter adjustment configuration of the

current load in any scenario, reducing database administrator's manual

intervention, improving the O&M effect, and meeting customer expectations.
Description

X-Tuner can run in any of the following modes:

e recommend: Log in to the database using the specified user name, obtain the
feature information about the running workload, and generate a parameter
recommendation report based on the feature information. Report improper
parameter settings and potential risks in the current database. Output the
currently running workload behavior and characteristics. Output the
recommended parameter settings. In this mode, the database does not need
to be restarted. In other modes, the database may need to be restarted
repeatedly.

e train: Modify parameters and execute the benchmark based on the
benchmark information provided by users. The reinforcement learning model
is trained through repeated iteration so that you can load the model in tune
mode for optimization.

e tune: Use an optimization algorithm to tune database parameters. Currently,
two types of algorithms are supported: deep reinforcement learning and
global search algorithm (global optimization algorithm). The deep
reinforcement learning mode requires train mode to generate the optimized
model after training. However, the global search algorithm does not need to
be trained in advance and can be directly used for search and optimization.

Enhancements

None

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 78

openGauss
Feature Description

7 Al Capabilities

Constraints

Dependencies

The database is normal, the client can be properly connected, and data can be
imported to the database. As a result, the optimization program can perform
the benchmark test for optimization effect.

To use this tool, you need to specify the user who logs in to the database. The
user who logs in to the database must have sufficient permissions to obtain
sufficient database status information.

If you log in to the database host as a Linux user, add $GAUSSHOME]/bin to
the PATH environment variable so that you can directly run database O&M
tools, such as gsql, gs_guc, and gs_ctl.

The recommended Python version is Python 3.6 or later. The required
dependency has been installed in the operating environment, and the
optimization program can be started properly. You can install a Python 3.6+
environment independently without setting it as a global environment
variable. You are not advised to install the tool as the root user. If you install
the tool as the root user and run the tool as another user, ensure that you
have the read permission on the configuration file.

This tool can run in three modes. In tune and train modes, you need to
configure the benchmark running environment and import data. This tool will
iteratively run the benchmark to check whether the performance is improved
after the parameters are modified.

In recommend mode, you are advised to run the command when the
database is executing the workload to obtain more accurate real-time
workload information.

By default, this tool provides benchmark running script samples of TPC-C,
TPC-H, TPC-DS, and sysbench. If you use the benchmarks to perform pressure
tests on the database system, you can modify or configure the preceding
configuration files. To adapt to your own service scenarios, you need to
compile the script file that drives your customized benchmark based on the
template.py file in the benchmark directory.

None

7.3 SQLdiag: Slow SQL Discovery

Availability

This feature is available since openGauss 1.1.0.

Introduction

SQLdiag is an SQL statement execution time prediction tool. It predicts the
execution time of SQL statements based on the statement logic similarity and
historical execution records without obtaining the SQL statement execution plan
using a template.

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 79

openGauss
Feature Description 7 Al Capabilities

Benefits

e The tool does not require users to provide SQL execution plans. Therefore, the
database performance is not affected.

e Different from other algorithms in the industry that are limited to OLAP or
OLTP, this tool is more widely used.

Description

The SQLdiag focuses on the historical SQL statements of the database,
summarizes the execution performance of the historical SQL statements, and then
uses the historical SQL statements to infer unknown services. The execution
duration of SQL statements in the database does not differ greatly in a short
period of time. SQLdiag can detect the statement result set similar to the executed
SQL statements from historical data and predict the execution duration of SQL
statements based on the SQL vectorization technology and template-based
method.

Enhancements

None

Constraints

e The historical logs and the format of the workload to be predicted meet the
requirements. You can use the GUC parameter of the database to enable the
collection or use the monitoring tool to collect logs.

e To ensure the prediction accuracy, the historical statement logs provided by
users should be as comprehensive and representative as possible.

e The Python environment has been configured as required.

Dependencies

None

7.4 Anomaly-detection: Database Indicator Collection,
Forecasting, and Exception Monitoring

Availability

This feature is available since openGauss 1.1.0.

Introduction

Anomaly_detection is an Al tool integrated into openGauss and can be used to
collect and predict database indicators, as well as monitor and diagnose
exceptions. It is a component in the dbmind suite. The following information can
be collected: IO_Read, I0_Write, CPU_Usage, Memory_Usage, and disk space
occupied by the database. Anomaly_detection can monitor multiple indicators at
the same time and predict the change trend of each indicator. When detecting

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 80

openGauss

Feature Description 7 Al Capabilities

Benefits

Description

that an indicator exceeds the manually set threshold in a certain period or at a
certain moment in the future, the tool generates an alarm through logs.

e This greatly simplifies the work of O&M personnel, releases a large number of
labor resources, and reduces costs for the company.

e This feature helps users detect exceptions in advance and prevent database
exceptions from causing greater loss.

Anomaly_detection consists of agent and detector. The agent and openGauss
database are deployed on the same server. The agent module provides the
following functions: Periodically collect database indicator data and store the
collected data in the buffer queue. Periodically send the data in the buffer queue
to the detector.

The detector module communicates with the agent module based on HTTP or
HTTPS. Therefore, the detector module can be deployed on any server that can
communicate with the agent module. The detector module has the following
functions: Receive the data sent by the agent and cache the collected data locally.
Predict the future change trend of the indicator and report alarms based on the
collected database indicator data.

Enhancements

Constraints

None

e The database is normal, and the data directory has been written into
environment variables and named PGDATA.

e If you log in to the database host as a Linux user, add $GAUSSHOME/bin to
the PATH environment variable so that you can directly run database O&M
tools, such as gsql, gs_guc, and gs_ctl.

e The recommended Python version is Python 3.6 or later. The required
dependency has been installed in the operating environment, and the
optimization program can be started properly.

e This tool consists of the agent and detector. Data is transmitted between the
agent and detector in HTTP or HTTPS mode. Therefore, ensure that the agent
server can communicate with the detector server properly.

e Detector module runs the server and monitor services, which need to be
started separately.

e |f HTTPS is used for communication, you need to prepare the CA certificate,
and certificates and keys of the agent and detector, and save them to ca,
agent, and server in the root directory of the project, respectively. In addition,
you need to save the key encryption password to pwf of the certificate, and
set the permission to 600 to prevent other users from performing read and
write operations. You can also use the script in the share directory to generate
certificates and keys.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 81

openGauss
Feature Description 7 Al Capabilities

Dependencies

None

7.5 Index-advisor: Index Recommendation

Availability

This feature is available since openGauss 1.1.0.

Introduction

Index-advisor is an intelligent database index recommendation tool that covers
multiple task levels and application scenarios. It provides the single-query index
recommendation function, virtual index function, and workload-level index
recommendation function to provide reliable index suggestions for users.

Benefits

This feature provides the quick and reliable index recommendation function,
greatly simplifying the work of O&M personnel.

Description

The single-query index recommendation function allows users to directly perform
operations in the database. This function generates recommended indexes for a
single query statement entered by users based on the semantic information of the
query statement and the statistics of the database. The virtual index function
allows users to directly perform operations in the database. This function
simulates the creation of a real index to avoid the time and space overhead
required for creating a real index. Based on the virtual index, users can evaluate
the impact of the index on the specified query statement by using the optimizer.
The workload-level index recommendation can be used by running scripts outside
the database. This function uses the workload of multiple DML statements as the
input to generate a batch of indexes that can optimize the overall workload
execution performance.

Enhancements

None

Constraints
The database is normal, and the client can be connected properly.

The gsqgl tool has been installed by the current user, and the tool path has been
added to the PATH environment variable.

The Python 3.6+ environment is available.

Dependencies

None

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 82

openGauss

Feature Description 7 Al Capabilities

7.6 DeepSQL: Al Algorithm in the Library

Availability

Introduction

Benefits

Description

This feature is available since openGauss 1.1.0.

The database DeepSQL feature implements the DB4Al function, that is, the Al
algorithm is implemented in the database to better support quick analysis and
computing of big data. A complete set of SQL-based machine learning, data
mining, and statistics algorithms is provided. Users can directly use SQL
statements to perform machine learning. DeepSQL can abstract the end-to-end
R&D process from data to models. With the bottom-layer engine and automatic
optimization, technical personnel with basic SQL knowledge can complete most
machine learning model training and prediction tasks. The entire analysis and
processing are running in the database engine. Users can directly analyze and
process data in the database without transferring data between the database and
other platforms. This avoids unnecessary data movement between multiple
environments.

Users can directly use Al algorithms in the database to avoid extra costs caused by
migration of a large amount of data. In addition, models can be centrally
managed by the database, which is easy to use.

DeepSQL is an enhancement to openGauss DB4Al. DeepSQL encapsulates
common machine learning algorithms into UDF and supports more than 60
general algorithms, including regression algorithms (such as linear regression,
logistic regression, and random forest), classification algorithms (such as KNN),
and clustering algorithms (such as K-means). In addition to basic machine
learning algorithms, graph-related algorithms are also included, such as
algorithms about the shortest path and graph diameter. Also, it supports data
processing (such as PCA), sparse vectors, common statistical algorithms (such as
covariance and Pearson coefficient calculation), training set and test set
segmentation, and cross validation.

Enhancements

Constraints

None

e Python 2.7.12 or later has been installed.
e The database supports the PL/Python stored procedure.
e You have the administrator permission to install the algorithm library.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 83

openGauss
Feature Description 7 Al Capabilities

Dependencies

None

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 84

	Contents
	1 High Performance
	1.1 CBO Optimizer
	1.2 LLVM
	1.3 Vectorized Engine
	1.4 Hybrid Row-Column Store
	1.5 Adaptive Compression
	1.6 SQL by pass
	1.7 Kunpeng NUMA Architecture Optimization
	1.8 High Concurrency of Thread Pools
	1.9 SMP for Parallel Execution

	2 High Availability (HA)
	2.1 Primary/Standby
	2.2 Logical Replication
	2.3 Online Node Replacement
	2.4 Logical Backup
	2.5 Physical Backup
	2.6 Automatic Job Retry upon Failure
	2.7 Ultimate RTO
	2.8 Cascaded Standby Server
	2.9 Delayed Replay
	2.10 Adding or Deleting a Standby Server

	3 Maintainability
	3.1 Gray Upgrade
	3.2 Workload Diagnosis Report (WDR)
	3.3 Slow SQL Diagnosis
	3.4 Session Performance Diagnosis
	3.5 System KPI-aided Diagnosis

	4 Database Security
	4.1 Access Control Model
	4.2 Separation of Control and Access Permissions
	4.3 Database Encryption Authentication
	4.4 Data Encryption and Storage
	4.5 Database Audit
	4.6 Network Communication Security
	4.7 Resource Label
	4.8 Unified Audit
	4.9 Dynamic Data Masking
	4.10 Row-Level Access Control
	4.11 Password Strength Verification
	4.12 Equality Query in a Fully-encrypted Database
	4.13 Ledger Database Mechanism

	5 Enterprise-Level Features
	5.1 Support for Functions and Stored Procedures
	5.2 SQL Hints
	5.3 Full-Text Indexing
	5.4 Copy Interface for Error Tolerance
	5.5 Partitioning
	5.6 Support for Advanced Analysis Functions
	5.7 Materialized View
	5.8 HyperLogLog
	5.9 Creating an Index Online
	5.10 Autonomous Transaction
	5.11 Global Temporary Table
	5.12 Pseudocolumn ROWNUM
	5.13 Stored Procedure Debugging

	6 Application Development Interfaces
	6.1 Standard SQL
	6.2 Standard Development Interfaces
	6.3 PostgreSQL API Compatibility
	6.4 PL/Java

	7 AI Capabilities
	7.1 Predictor: AI Query Time Forecasting
	7.2 X-Tuner: Parameter Optimization and Diagnosis
	7.3 SQLdiag: Slow SQL Discovery
	7.4 Anomaly-detection: Database Indicator Collection, Forecasting, and Exception Monitoring
	7.5 Index-advisor: Index Recommendation
	7.6 DeepSQL: AI Algorithm in the Library

