openGauss
2.1.0

Compilation Guide

Issue 01
Date 2021-09-30

V.

HUAWEI

HUAWEI TECHNOLOGIES CO., LTD.

Copyright © Huawei Technologies Co., Ltd. 2021. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior
written consent of Huawei Technologies Co., Ltd.

Trademarks and Permissions

QD

nuawer and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd.
All other trademarks and trade names mentioned in this document are the property of their respective
holders.

Notice

The purchased products, services and features are stipulated by the contract made between Huawei and
the customer. All or part of the products, services and features described in this document may not be
within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements,
information, and recommendations in this document are provided "AS IS" without warranties, guarantees
or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the
preparation of this document to ensure accuracy of the contents, but all statements, information, and
recommendations in this document do not constitute a warranty of any kind, express or implied.

Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base
Bantian, Longgang
Shenzhen 518129
People's Republic of China

Website: https://www.huawei.com

Email: support@huawei.com

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. i

https://www.huawei.com
mailto:support@huawei.com

openGauss
Compilation Guide Contents

Contents

T INEFOAUCTION.....ceeeeeeeeeceececeeceecneeeesateeeseesnesasessesasessessesssssnssssssasessassssssesassssasassssesasssaases 1
2 Setting up the Build ENVIrONMENT..........o e eeieeeeeecceceeceneeceeseecneeseeeeesaesseesassseesassssesnees 2
3VErSiON BUIld.....coeioiieiiiiiniiiieiinenninennsensssssnnessssasssssssssssssassssssssssssssssssssssssssssssssssssesases 4
3.1 PrEPAIATIONS. ...ttt ettt b et A £t £ AR E bkt s et ettt et a ettt s et et eas 5
3.2 Software Build and INSTAllation. ...ttt ettt 9
3.3 Building the Product INStallation PACKage.........ccuiiieirieeeieeciecieeieietsess ettt s s s sssssssesassenans 11
B FAQS.cooeiieeeeieenneniessnesesssnasesssnssesssnsssssssnsassssnsssssssnsssssssssssssssssssssssssssssnssssssssssssssnssssssnssssssanssssse 13
4.1 How Do | Delete Temporary Files Generated DUring BUild?..........ccoooerirrinirenrinsinninesenereeesesie e 13
4.2 How Do | Resolve the "Configure error: C compiler cannot create executables" Error?...........ccceeverunee. 13
4.3 How Do | Resolve the "g++: fatal error: Killed signal terminated program cclplus" Error?..........ccccoeuuu..... 14
4.4 How Do | Handle the "out of memory allocating xxx bytes after a total of xxx bytes" Error?................ 14

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. i

openGauss
Compilation Guide 1 Introduction

Introduction

Purpose

This document helps you quickly understand the software and hardware
requirements, environment configuration, and how to build software or
installation packages from the source code for building openGauss.

Overview

This document describes the operating system (OS) requirements, build
environment requirements, software dependencies, build methods, and build result
storage paths of openGauss.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 1

openGauss
Compilation Guide 2 Setting up the Build Environment

Setting up the Build Environment

Hardware Requirements
Hardware requirements for building openGauss are as follows:

e Number of servers: 1
e Hardware specifications:
- CPU:4U
- Memory: 8 GB
- Free disk space: 100 GB (Linux 64-bit)

Software Requirements
OS Requirements
The following OSs are supported:

e CentOS 7.6 (x86 architecture)

e openEuler-20.03-LTS (AArch64 architecture)
e openEuler-20.03-LTS (x86 architecture)

e Kylin-V10 (AArch64 architecture)

Software Dependency Requirements
Table 2-1 describes the openGauss software dependency requirements.

You are advised to use the default installation packages of the following
dependent software in the listed OS installation CD-ROMs or sources. If the
following software does not exist, refer to the recommended versions of the
software.

Table 2-1 Software dependency requirements

Software Recommended Version
libaio-devel 0.3.109-13
flex 2.5.31 or later

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 2

openGauss
Compilation Guide

2 Setting up the Build Environment

Software

Recommended Version

bison

2.7-4

ncurses-devel

5.9-13.20130511

glibc-devel 2.17-111
patch 2.7.1-10
redhat-Isb-core 4.1
readline-devel 7.0-13

Environment Variables

The environment variable configuration for building openGauss has been written
into the one-click build and packaging script. Therefore, you do not need to

configure the environment variables.

If you do not want to use the one-click build script, you need to manually
configure environment variables. For details, see 3.2 Software Build and

Installation.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 3

openGauss
Compilation Guide 3 Version Build

Version Build

A build.sh script is provided for building openGauss and generating the
installation package. You can also configure environment variables and run
commands to build openGauss.

This section describes how to build an openGauss version. Figure 3-1 shows the
build process. For details, see the following sections.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 4

openGauss
Compilation Guide 3 Version Build

Figure 3-1 openGauss build process

Download

OR code

openGauss-

third_party

Download code
Download code

software

Build open—sourcel

v

binarylibs + openGauss-server
Install and build Build product
software: installation
= One-click build script package:
build.sh One-click build script
= Manual build build.sh

3.1 Preparations
3.2 Software Build and Installation

3.3 Building the Product Installation Package

3.1 Preparations

Downloading Code
Prerequisites

Git and Git Large File Storage (LFS) have been installed and configured on the
local host.

Procedure

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 5

openGauss
Compilation Guide 3 Version Build

Step 1 Run the following commands to download the code and open-source third-party
software repository. [git ssh address] indicates an actual code download address.
You can obtain these addresses from the openGauss community.

[user@linux sdal$ git clone [git ssh address] openGauss-server
[user@linux sdal$ git clone [git ssh address] openGauss-third_party
[user@linux sda]$ # mkdir binarylibs For details about this comment, see the following note.

(11 NOTE

e openGauss-server: openGauss code repository.

e openGauss-third_party: open-source third-party software repository on which
openGauss depends.

e binarylibs: file folder for storing the built open-source third-party software. You can
obtain the package by referring to Building Open-source Software. Since open-source
software build takes a long time, we have built binarylibs using openGauss-third_party
and compressed and uploaded it to the Internet.

You can download it at https://opengauss.obs.cn-south-1.myhuaweicloud.com/2.0.0/
openGauss-third_party_binarylibs.tar.gz.

Decompress the package and rename the folder to binarylibs.

Step 2 When the progress of each download reaches 100%, the download is successful.

--—-End

Building Open-source Software
Building Open-source Software

Before building openGauss, build the open-source third-party software on which
openGauss depends. The open-source third-party software is stored in the
openGauss-third_party code repository. After downloading the software, you can
use git Ifs pull to obtain large files from the code repository. Generally, you only
need to build the software once. If the open-source software is updated, rebuild
the software.

Since this step takes a long time, we have built binarylibs using openGauss-
third_party. You can download the package by referring to Downloading Code.

Table 3-1 openGauss open-source third-party software required before build

Software Recommended Version
python3 36

python3-devel 3

setuptools 36.6.1

libaio-devel 0.3.109-13

flex 2.5.31 or later
ncurses-devel 5.9-13.20130511
[sb_release 4.1

pam-devel 1.1.8-1.3.1

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 6

https://opengauss.obs.cn-south-1.myhuaweicloud.com/2.0.0/openGauss-third_party_binarylibs.tar.gz
https://opengauss.obs.cn-south-1.myhuaweicloud.com/2.0.0/openGauss-third_party_binarylibs.tar.gz

openGauss

Compilation Guide

3 Version Build

Step 1

Step 2

Software Recommended Version
libffi-devel 3.1

patch 2.7.1-10
golang 1.13.3 or later
autoconf 2.69
automake 1.13.4

byacc 1.9

cmake 3.19.2
diffutils 3.7
openssl-devel 1.1.1

libtool 2.4.2 or later
libtool-devel 2.4.2 or later

Prepare GCC 7.3 before building the third-party libraries. You are advised to use
the released and built third-party library GCC and configure environment
variables.

After installing the software listed in Table 3-1, point the default Python version
to python3.x and perform the following operations:

Perform the following operations to go to the directory of the open-source third-
party software on which the kernel depends, build the open-source third-party
software, and generate binary programs or library files. /sda/openGauss-
third_party is the directory for downloading open-source third-party software.

[user@linux sda]$ cd /sda/openGauss-third_party/build
[user@linux build]$ sh build_all.sh

After the preceding commands are executed, the open-source third-party software
required for openGauss build is automatically generated. To generate any open-
source third-party software independently, go to the corresponding directory and
run the build.sh script. For example:

[user@linux sda]$ cd /sda/openGauss-third_party/dependency/openssl
[user@linux openssl]$ sh build.sh

The OpenSSL is generated.

(11 NOTE

For error logs, you can view the corresponding log in the build directory and the log in the
corresponding module. For example, you can view the OpenSSL build and installation logs
in the dependency module.

e /sda/openGauss-third_party/build/dependency_build.log
e /sda/openGauss-third_party/dependency/build/openssl_build.log
e /sda/openGauss-third_party/dependency/openssl/build_openssl.log

--—-End

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd. 7

openGauss

Compilation Guide

3 Version Build

Build Result

After the preceding script is executed, the final build result is stored in output
under the openGauss-third_party directory These files will be used during the
openGauss-server build.

Introduction to build.sh

openGauss-server/build.sh is crucial for the build. It integrates two functions:
installing and building software as well as building product installation package,
to quickly build and package code.

The following table describes the parameters.

Table 3-2 build.sh parameters

Option Default Value | Parameter Description

-h No default - Help menu
value

-m release [debug | Selects the target version.

release |
memcheck]

-3rd ${Code [binarylibs Specifies the path of binarylibs.
directory}/ path] The path must be an absolute
binarylibs path.

-pkg No default - Compresses the code build result
value into an installation package.

-nopt No default - If this option is used, the CPU of
value the Kunpeng platform is not

optimized.

Issue 01 (2021-09-30)

Copyright © Huawei Technologies Co., Ltd.

openGauss
Compilation Guide 3 Version Build

(11 NOTE

1. -m [debug | release | memcheck] indicates that three target versions can be selected:

e release: indicates that the binary program of the release version is generated.
During this version build, the GCC high-level optimization option is configured to
remove the kernel debugging code. This option is usually used in the production
environment or performance test environment.

e debug: indicates that a binary program of the debug version is generated. During
this version build, the kernel code debugging function is added, which is usually
used in the development self-test environment.

e memcheck: indicates that a binary program of the memcheck version is generated.
During this version build, the ASAN function is added based on the debug version
to locate memory problems.

2. -3rd [binarylibs path] is the path of binarylibs. By default, binarylibs exists in the
current code folder. If binarylibs is moved to openGauss-server or a soft link to
binarylibs is created in openGauss-server, you do not need to specify the parameter.
However, if you do so, please note that the file is easy to be deleted by the git clean
command.

3. Each option in this script has a default value. The number of options is small and the
dependency is simple. Therefore, this script is easy to use. If the required value is
different from the default value, set this parameter based on the actual requirements.

3.2 Software Build and Installation

Software build and installation are to build code to generate software and install
the software on a computer. The one-click build script build.sh is provided. You
can also manually configure environment variables. The two methods are
described below in this section.

Prerequisites

e The software and hardware have been prepared based on the requirements in
2 Setting up the Build Environment, and the code has been downloaded by
referring to Downloading Code.

e Open-source software has been built. For details, see Building Open-source
Software. GCC 7.3 has been placed in the output directory based on the
directory structure of the released and built third-party library.

e You are familiar with the parameter options and functions of the build.sh
script.

e The code environment is clean, and no file is generated before the current
build. For details, see FAQ 4.1.

One-click Script Build

Step 1 Run the following command to go to the directory where the software code build
script is stored:

[user@linux sdal$ cd /sda/openGauss-server

Step 2 Run the following command to build openGauss:
[user@linux openGauss-server]$ sh build.sh -m [debug | release | memcheck] -3rd [binarylibs path]

For example:

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 9

openGauss
Compilation Guide

3 Version Build

Step 3

Step 4

Manual Build
Step 1

Step 2

Step 3

Step 4

sh build.sh ~ # Build and install openGauss of the release version. binarylibs or its soft link must exist in
the code directory. Otherwise, the operation fails.
sh build.sh -m debug -3rd /sdc/binarylibs # Build and install openGauss of the debug version.

If the following information is displayed, the build is successful:
make compile sucessfully!

e The software installation path after build is /sda/openGauss-server/
mppdb_temp_install.

e The built binary files are stored in /sda/openGauss-server/
mppdb_temp_install/bin.

e The build log file is stored in ./build/script/makemppdb_pkg.log.

Import environment variables to initialize and start the database.

export CODE_BASE= # Path of the openGauss-server file
export GAUSSHOME=$CODE_BASE/mppdb_temp_install/

export LD_LIBRARY_PATH=$GAUSSHOME/lib::$LD_LIBRARY_PATH
export PATH=$GAUSSHOME/bin:$PATH

--—-End

Run the following command to go to the software code directory:
[user@linux sda]$ cd /sda/openGauss-server

Run the following script to obtain the system version:
[user@linux openGauss-server]$ sh src/get_PlatForm_str.sh

(11 NOTE

e The command output indicates the OSs supported by the openGauss. The OSs
supported by the openGauss are centos7.6_x86_64 and openeuler_aarch64.

o If Failed or another version is displayed, the openGauss does not support the current
operating system.

Configure environment variables, fill in the blank based on the code download
location, and replace *** with the result obtained in step 2.

export CODE_BASE= # Path of the openGauss-server file

export BINARYLIBS= # Path of the binarylibs file

export GAUSSHOME=$CODE_BASE/dest/

export GCC_PATH=$BINARYLIBS/buildtools/***/gcc7.3/

export CC=$GCC_PATH/gcc/bin/gcc

export CXX=$GCC_PATH/gcc/bin/g++

export LD_LIBRARY_PATH=$GAUSSHOME/lib:$GCC_PATH/gcc/lib64:$GCC_PATH/isl/lib:$GCC_PATH/mpc/lib/:
$GCC_PATH/mpfr/lib/:$GCC_PATH/gmp/lib/:$LD_LIBRARY_PATH

export PATH=$GAUSSHOME/bin:$GCC_PATH/gcc/bin:$PATH

Select a version and configure it.

debug version:
./configure --gcc-version=7.3.0 CC=g++ CFLAGS="-0O0' --prefix=3GAUSSHOME --3rd=$BINARYLIBS --enable-
debug --enable-cassert --enable-thread-safety --with-readline --without-zlib

release version:
./configure --gcc-version=7.3.0 CC=g++ CFLAGS="-02 -g3" --prefix=$GAUSSHOME --3rd=$BINARYLIBS --
enable-thread-safety --with-readline --without-zlib

memcheck version:
.Jconfigure --gcc-version=7.3.0 CC=g++ CFLAGS="-O0' --prefix=$GAUSSHOME --3rd=$BINARYLIBS --enable-
debug --enable-cassert --enable-thread-safety --with-readline --without-zlib --enable-memory-check

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 10

openGauss

Compilation Guide

3 Version Build

Step 5

Step 6

(11 NOTE

e [debug | release | memcheck] indicates that three target versions are available. The
three target versions are as follows:

- release: indicates that the binary program of the release version is generated.
During this version build, the GCC high-level optimization option is configured to
remove the kernel debugging code. This option is usually used in the production
environment or performance test environment.

- debug: indicates that a binary program of the debug version is generated. During
this version build, the kernel code debugging function is added, which is usually
used in the development self-test environment.

- memcheck: indicates that a binary program of the memcheck version is generated.
During this version build, the ASAN function is added based on the debug version
to locate memory problems.

e On the ARM-based platform, -D__USE_NUMA needs to be added to CFLAGS.

e On the ARMv8.1 platform or a later version (for example, Kunpeng 920), -D__ ARM_LSE
needs to be added to CFLAGS.

e If binarylibs is moved to openGauss-server or a soft link to binarylibs is created in
openGauss-server, you do not need to specify the --3rd parameter. However, if you do
so, please note that the file is easy to be deleted by the git clean command.

e To use the MOT, you need to add --enable-mot to the command.

Run the following commands to build openGauss:

[user@linux openGauss-server]$ make -sj
[user@linux openGauss-server]$ make install -sj

If the following information is displayed, the build and installation are successful:

openGauss installation complete.

e The software installation path after build is $GAUSSHOME.
e The built binary files are stored in $GAUSSHOME/bin.

--—-End

3.3 Building the Product Installation Package

Prerequisites

To build an installation package is to build code and generate a software
installation package. The build and packaging process of the installation package
is also integrated in build.sh.

e The software and hardware have been prepared based on the requirements in
2 Setting up the Build Environment, and the code has been downloaded by
referring to Downloading Code.

e Open-source software has been built. For details, see Building Open-source
Software.

e You are familiar with the parameter options and functions of the build.sn
script.

e The code environment is clean, and no file is generated before the current
build. For details, see 4.1 How Do | Delete Temporary Files Generated
During Build?.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 11

openGauss

Compilation Guide

3 Version Build

Procedure

Step 1

Step 2

Step 3

Run the following command to go to the code directory:
[user@linux sdal$ cd /sda/openGauss-server

Run the following command to build the openGauss installation package:
[user@linux openGauss-server]$ sh build.sh -m [debug | release | memcheck] -3rd [binarylibs path] -pkg

For example:

sh build.sh -pkg ~ # Generate the openGauss installation package of the release version. binarylibs or its
soft link must exist in the code directory. Otherwise, the operation fails.

sh build.sh -m debug -3rd /sdc/binarylibs -pkg # Generate the openGauss installation package of
the debug version.

Compared with 3.2 Software Build and Installation, this operation involves the
process of generating software by one-click build and the process of encapsulating
the software into an installation package. Compared with the build.sh command
in 3.2 Software Build and Installation, only the -pkg option is added.

If the following information is displayed, the installation package build is
successful:

success!

e The generated installation package is stored in the ./output directory.

e The build log file is stored in ./build/script/makemppdb_pkg.log.

e The installation package packaging log file is stored in ./build/script/
make_package.log.

--—-End

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 12

openGauss
Compilation Guide 4 FAQs

FAQs

4.1 How Do | Delete Temporary Files Generated During Build?

4.2 How Do | Resolve the "Configure error: C compiler cannot create executables"
Error?

4.3 How Do | Resolve the "g++: fatal error: Killed signal terminated program
cclplus" Error?

4.4 How Do | Handle the "out of memory allocating xxx bytes after a total of xxx
bytes" Error?

4.1 How Do | Delete Temporary Files Generated During
Build?

Question

How do | delete temporary files generated during build?

Answer

Go to the /sda/openGauss-server directory and run the following command to
delete temporary files generated during build.

e Delete the files generated by configure and make.
make distclean -sj

e Delete the files generated by make.
make clean -sj

4.2 How Do | Resolve the "Configure error: C compiler
cannot create executables" Error?

Question

How do | resolve the "Configure error: C compiler cannot create executables" error
reported during version build?

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd. 13

openGauss
Compilation Guide

4 FAQs

Answer

Error cause: The binarylibs file is incomplete or damaged.

Solution: If binarylibs is built using open-source software, rebuild the open-source

third-party software. If binarylibs is downloaded from code, download the code

again. Then run the current script or command again.

4.3 How Do | Resolve the "g++: fatal error: Killed signal
terminated program cclplus" Error?

Question

Answer

How do | resolve the "g++: fatal error: Killed signal terminated program cclplus"
error that occurs during build?

Error cause: The -sj parameter is added to the build process in the script. The
number of concurrent tasks is too large.

Solution: Reduce the number of concurrent make tasks during build or run the
make command directly. If the one-click script is used, you need to modify the
script.

4.4 How Do | Handle the "out of memory allocating

xxx bytes

Question

Answer

after a total of xxx bytes" Error?

How do | resolve the "out of memory allocating xxx bytes after a total of xxx
bytes" error that occurs during build?

Error cause: The -sj parameter is added to the build process in the script. In
addition, the machine configuration is low, the memory is insufficient, and the
number of concurrent tasks is too large.

Solution: Reduce the number of concurrent make tasks during build or run the
make command directly. If the one-click script is used, you need to modify the
script.

Issue 01 (2021-09-30) Copyright © Huawei Technologies Co., Ltd.

14

	Contents
	1 Introduction
	2 Setting up the Build Environment
	3 Version Build
	3.1 Preparations
	3.2 Software Build and Installation
	3.3 Building the Product Installation Package

	4 FAQs
	4.1 How Do I Delete Temporary Files Generated During Build?
	4.2 How Do I Resolve the "Configure error: C compiler cannot create executables" Error?
	4.3 How Do I Resolve the "g++: fatal error: Killed signal terminated program cclplus" Error?
	4.4 How Do I Handle the "out of memory allocating xxx bytes after a total of xxx bytes" Error?

